Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Neurodegener ; 16(1): 80, 2021 11 27.
Article in English | MEDLINE | ID: mdl-34838071

ABSTRACT

BACKGROUND: MicroRNA (miRNA) expression in the brain is altered in neurodegenerative diseases. Recent studies demonstrated that selected miRNAs conventionally regulating gene expression at the post-transcriptional level can act extracellularly as signaling molecules. The identity of miRNA species serving as membrane receptor ligands involved in neuronal apoptosis in the central nervous system (CNS), as well as the miRNAs' sequence and structure required for this mode of action remained largely unresolved. METHODS: Using a microarray-based screening approach we analyzed apoptotic cortical neurons of C56BL/6 mice and their supernatant with respect to alterations in miRNA expression/presence. HEK-Blue Toll-like receptor (TLR) 7/8 reporter cells, primary microglia and macrophages derived from human and mouse were employed to test the potential of the identified miRNAs released from apoptotic neurons to serve as signaling molecules for the RNA-sensing receptors. Biophysical and bioinformatical approaches, as well as immunoassays and sequential microscopy were used to analyze the interaction between candidate miRNA and TLR. Immunocytochemical and -histochemical analyses of murine CNS cultures and adult mice intrathecally injected with miRNAs, respectively, were performed to evaluate the impact of miRNA-induced TLR activation on neuronal survival and microglial activation. RESULTS: We identified a specific pattern of miRNAs released from apoptotic cortical neurons that activate TLR7 and/or TLR8, depending on sequence and species. Exposure of microglia and macrophages to certain miRNA classes released from apoptotic neurons resulted in the sequence-specific production of distinct cytokines/chemokines and increased phagocytic activity. Out of those miRNAs miR-100-5p and miR-298-5p, which have consistently been linked to neurodegenerative diseases, entered microglia, located to their endosomes, and directly bound to human TLR8. The miRNA-TLR interaction required novel sequence features, but no specific structure formation of mature miRNA. As a consequence of miR-100-5p- and miR-298-5p-induced TLR activation, cortical neurons underwent cell-autonomous apoptosis. Presence of miR-100-5p and miR-298-5p in cerebrospinal fluid led to neurodegeneration and microglial accumulation in the murine cerebral cortex through TLR7 signaling. CONCLUSION: Our data demonstrate that specific miRNAs are released from apoptotic cortical neurons, serve as endogenous TLR7/8 ligands, and thereby trigger further neuronal apoptosis in the CNS. Our findings underline the recently discovered role of miRNAs as extracellular signaling molecules, particularly in the context of neurodegeneration.


Subject(s)
MicroRNAs , Toll-Like Receptor 7 , Animals , Cerebral Cortex/metabolism , Ligands , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
3.
Nat Commun ; 11(1): 3753, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719333

ABSTRACT

Reactive astrocytes have been implicated in the pathogenesis of neurodegenerative diseases, including a non-cell autonomous effect on motor neuron survival in ALS. We previously defined a mechanism by which microglia release three factors, IL-1α, TNFα, and C1q, to induce neurotoxic astrocytes. Here we report that knocking out these three factors markedly extends survival in the SOD1G93A ALS mouse model, providing evidence for gliosis as a potential ALS therapeutic target.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Astrocytes/metabolism , Complement C1q/metabolism , Disease Progression , Interleukin-1alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Complement C3/metabolism , Disease Models, Animal , Humans , Mice, Inbred C57BL , Mice, Knockout , Microglia , Superoxide Dismutase-1/metabolism
4.
Cell Rep ; 31(12): 107776, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579912

ABSTRACT

Glaucoma is a neurodegenerative disease that features the death of retinal ganglion cells (RGCs) in the retina, often as a result of prolonged increases in intraocular pressure. We show that preventing the formation of neuroinflammatory reactive astrocytes prevents the death of RGCs normally seen in a mouse model of glaucoma. Furthermore, we show that these spared RGCs are electrophysiologically functional and thus still have potential value for the function and regeneration of the retina. Finally, we demonstrate that the death of RGCs depends on a combination of both an injury to the neurons and the presence of reactive astrocytes, suggesting a model that may explain why reactive astrocytes are toxic only in some circumstances. Altogether, these findings highlight reactive astrocytes as drivers of RGC death in a chronic neurodegenerative disease of the eye.


Subject(s)
Astrocytes/pathology , Neurons/pathology , Neurotoxins/toxicity , Retina/injuries , Retina/pathology , Animals , Axons/drug effects , Axons/pathology , Cell Death/drug effects , Cell Shape/drug effects , Complement C1q/metabolism , Dendrites/drug effects , Dendrites/metabolism , Disease Models, Animal , Glaucoma/complications , Glaucoma/pathology , Glaucoma/physiopathology , Gliosis/complications , Gliosis/pathology , Gliosis/physiopathology , Interleukin-1/metabolism , Intraocular Pressure , Mice, Knockout , Microspheres , Neurons/drug effects , Retina/drug effects , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Tumor Necrosis Factor-alpha/metabolism
5.
iScience ; 15: 39-54, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31030181

ABSTRACT

Clostridium perfringens epsilon toxin (ETX) is hypothesized to mediate blood-brain barrier (BBB) permeability by binding to the myelin and lymphocyte protein (MAL) on the luminal surface of endothelial cells (ECs). However, the kinetics of this interaction and a general understanding of ETX's behavior in a live organism have yet to be appreciated. Here we investigate ETX binding and BBB breakdown in living Danio rerio (zebrafish). Wild-type zebrafish ECs do not bind ETX. When zebrafish ECs are engineered to express human MAL (hMAL), proETX binding occurs in a time-dependent manner. Injection of activated toxin in hMAL zebrafish initiates BBB leakage, hMAL downregulation, blood vessel stenosis, perivascular edema, and blood stasis. We propose a kinetic model of MAL-dependent ETX binding and neurovascular pathology. By generating a humanized zebrafish BBB model, this study contributes to our understanding of ETX-induced BBB permeability and strengthens the proposal that MAL is the ETX receptor.

SELECTION OF CITATIONS
SEARCH DETAIL
...