Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Neurosci ; 19(11): 1489-1496, 2016 11.
Article in English | MEDLINE | ID: mdl-27428651

ABSTRACT

Social encounters are associated with varying degrees of emotional arousal and stress. The mechanisms underlying adequate socioemotional balance are unknown. The medial amygdala (MeA) is a brain region associated with social behavior in mice. Corticotropin-releasing factor receptor type-2 (CRF-R2) and its specific ligand urocortin-3 (Ucn3), known components of the behavioral stress response system, are highly expressed in the MeA. Here we show that mice deficient in CRF-R2 or Ucn3 exhibit abnormally low preference for novel conspecifics. MeA-specific knockdown of Crfr2 (Crhr2) in adulthood recapitulated this phenotype. In contrast, pharmacological activation of MeA CRF-R2 or optogenetic activation of MeA Ucn3 neurons increased preference for novel mice. Furthermore, chemogenetic inhibition of MeA Ucn3 neurons elicited pro-social behavior in freely behaving groups of mice without affecting their hierarchal structure. These findings collectively suggest that the MeA Ucn3-CRF-R2 system modulates the ability of mice to cope with social challenges.


Subject(s)
Amygdala/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Social Behavior , Urocortins/metabolism , Animals , Behavior, Animal/physiology , Corticotropin-Releasing Hormone/metabolism , Inhibition, Psychological , Mice , Mice, Knockout , Neurons/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Urocortins/genetics
2.
J Neurosci ; 32(45): 15913-21, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23136429

ABSTRACT

Retroperitoneal white adipose tissue (rWAT) and subcutaneous (inguinal) white adipose tissue (iWAT) are both innervated and regulated by sympathetic efferents, but the distribution and identity of the cells in the brain that regulate sympathetic outflow are poorly characterized. Our aim was to use two isogenic strains of a neurotropic virus (pseudorabies, Bartha) tagged with either green or red fluorescent reporters to identify cells in the brain that project to rWAT and/or iWAT. These viruses were injected into separate WAT depots in male and female Sprague Dawley rats. Retrogradely labeled neurons in the CNS were characterized by immunohistochemistry and PCR. For the latter, laser capture of individual virally labeled neurons was used. All virally labeled brain regions contained neurons projecting to either and both WAT depots. Neurons to abdominal fat were the most abundant in males, whereas females contained a greater proportion of neurons to subcutaneous via private lines and collateral branches. Retrogradely labeled neurons directed to WAT expressed estrogen receptor-α (ERα), and fewer neurons to subcutaneous WAT expressed ERα in males. Regardless of sex, projections from the arcuate nucleus were predominantly from pro-opiomelanocortin cells, with a notable lack of projections from agouti-related protein-expressing neurons. Within the lateral hypothalamus, neurons directed to rWAT and iWAT expressed orexin and melanin-concentrating hormone (MCH), but male rats had a predominance of MCH directed to iWAT. In conclusion, the neurochemical substrates that project through polysynaptic pathways to iWAT and rWAT are different in male and female rats, suggesting that metabolic regulation of rWAT and iWAT is sexually dimorphic.


Subject(s)
Abdominal Fat/innervation , Adipose Tissue, White/innervation , Brain/metabolism , Neurons/metabolism , Sex Characteristics , Subcutaneous Fat/innervation , Abdominal Fat/metabolism , Adipose Tissue, White/metabolism , Animals , Estrogen Receptor alpha/metabolism , Female , Hypothalamic Hormones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Melanins/metabolism , Neural Pathways/metabolism , Neuropeptides/metabolism , Orexins , Pituitary Hormones/metabolism , Pro-Opiomelanocortin/metabolism , Rats , Rats, Sprague-Dawley , Subcutaneous Fat/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL