Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 83(24): 4130-4141, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37934115

ABSTRACT

Although KRASG12C inhibitors show clinical activity in patients with KRAS G12C mutated non-small cell lung cancer (NSCLC) and other solid tumor malignancies, response is limited by multiple mechanisms of resistance. The KRASG12C inhibitor JDQ443 shows enhanced preclinical antitumor activity combined with the SHP2 inhibitor TNO155, and the combination is currently under clinical evaluation. To identify rational combination strategies that could help overcome or prevent some types of resistance, we evaluated the duration of tumor responses to JDQ443 ± TNO155, alone or combined with the PI3Kα inhibitor alpelisib and/or the cyclin-dependent kinase 4/6 inhibitor ribociclib, in xenograft models derived from a KRASG12C-mutant NSCLC line and investigated the genetic mechanisms associated with loss of response to combined KRASG12C/SHP2 inhibition. Tumor regression by single-agent JDQ443 at clinically relevant doses lasted on average 2 weeks and was increasingly extended by the double, triple, or quadruple combinations. Growth resumption was accompanied by progressively increased KRAS G12C amplification. Functional genome-wide CRISPR screening in KRASG12C-dependent NSCLC lines with distinct mutational profiles to identify adaptive mechanisms of resistance revealed sensitizing and rescuing genetic interactions with KRASG12C/SHP2 coinhibition; FGFR1 loss was the strongest sensitizer, and PTEN loss the strongest rescuer. Consistently, the antiproliferative activity of KRASG12C/SHP2 inhibition was strongly enhanced by PI3K inhibitors. Overall, KRAS G12C amplification and alterations of the MAPK/PI3K pathway were predominant mechanisms of resistance to combined KRASG12C/SHP2 inhibitors in preclinical settings. The biological nodes identified by CRISPR screening might provide additional starting points for effective combination treatments. SIGNIFICANCE: Identification of resistance mechanisms to KRASG12C/SHP2 coinhibition highlights the need for additional combination therapies for lung cancer beyond on-pathway combinations and offers the basis for development of more effective combination approaches. See related commentary by Johnson and Haigis, p. 4005.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Proto-Oncogene Proteins p21(ras)/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Early Detection of Cancer , Enzyme Inhibitors/therapeutic use , Mutation , Cell Line, Tumor
2.
J Med Chem ; 63(21): 12542-12573, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32930584

ABSTRACT

FGF19 signaling through the FGFR4/ß-klotho receptor complex has been shown to be a key driver of growth and survival in a subset of hepatocellular carcinomas, making selective FGFR4 inhibition an attractive treatment opportunity. A kinome-wide sequence alignment highlighted a poorly conserved cysteine residue within the FGFR4 ATP-binding site at position 552, two positions beyond the gate-keeper residue. Several strategies for targeting this cysteine to identify FGFR4 selective inhibitor starting points are summarized which made use of both rational and unbiased screening approaches. The optimization of a 2-formylquinoline amide hit series is described in which the aldehyde makes a hemithioacetal reversible-covalent interaction with cysteine 552. Key challenges addressed during the optimization are improving the FGFR4 potency, metabolic stability, and solubility leading ultimately to the highly selective first-in-class clinical candidate roblitinib.


Subject(s)
Piperazines/chemistry , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Amino Acid Sequence , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Cysteine/chemistry , Dogs , Drug Design , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver Neoplasms/drug therapy , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Piperazines/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Rats , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 18(12): 2194-2206, 2019 12.
Article in English | MEDLINE | ID: mdl-31409633

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and it is the third leading cause of cancer-related deaths worldwide. Recently, aberrant signaling through the FGF19/FGFR4 axis has been implicated in HCC. Here, we describe the development of FGF401, a highly potent and selective, first in class, reversible-covalent small-molecule inhibitor of the kinase activity of FGFR4. FGF401 is exquisitely selective for FGFR4 versus the other FGFR paralogues FGFR1, FGFR2, FGFR3, and all other kinases in the kinome. FGF401 has excellent drug-like properties showing a robust pharmacokinetic/pharmacodynamics/efficacy relationship, driven by a fraction of time above the phospho-FGFR4 IC90 value. FGF401 has remarkable antitumor activity in mice bearing HCC tumor xenografts and patient-derived xenograft models that are positive for FGF19, FGFR4, and KLB. FGF401 is the first FGFR4 inhibitor to enter clinical trials, and a phase I/II study is currently ongoing in HCC and other solid malignancies.


Subject(s)
Fibroblast Growth Factors/genetics , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Animals , Humans , Liver Neoplasms/pathology , Mice , Mice, Nude , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...