Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Acta Biomater ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944324

ABSTRACT

To probe its environment, the flying insect controllably flexes, twists, and maneuvers its antennae by coupling mechanical deformations with the sensory output. We question how the materials properties of insect antennae could influence their performance. A comparative study was conducted on four hawkmoth species: Manduca sexta, Ceratomia catalpae, Manduca quinquemaculata, and Xylophanes tersa. The morphology of the antennae of three hawkmoths that hover while feeding and one putatively non-nectar-feeding hawkmoth (Ceratomia catalpa) do not fundamentally differ, and all the antennae are comb-like (i.e., pectinate), markedly in males but weakly in females. Applying different weights to the free end of extracted cantilevered antennae, we discovered anisotropy in flexural rigidity when the antenna is forced to bend dorsally versus ventrally. The flexural rigidity of male antennae was less than that of females. Compared with the hawkmoths that hover while feeding, Ceratomia catalpae has almost two orders of magnitude lower flexural rigidity. Tensile tests showed that the stiffness of male and female antennae is almost the same. Therefore, the differences in flexural rigidity are explained by the distinct shapes of the antennal pectination. Like bristles in a comb, the pectinations provide extra rigidity to the antenna. We discuss the biological implications of these discoveries in relation to the flight habits of hawkmoths. Flexural anisotropy of antennae is expected in other groups of insects, but the targeted outcome may differ. Our work offers promising new applications of shaped fibers as mechanical sensors. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. Our comparative analysis of mechanical properties of hawkmoth antennae revealed a new feature: antenna resistance to bending depends on the bending direction. Our discovery replaces the conventional textbook scenario considering hawkmoth antennae as rigid rods. We showed that the pectinate antennae of hawkmoths behave as a comb in which the bristles resist bending when they come together. This anisotropy of flexural resistance offers a new mode of environmental sensing that has never been explored. The principles we found apply to other insects with non-axisymmetric antennae. Our work offers new applications for shaped fibers that could be designed to sense the flows.

2.
Insects ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38786902

ABSTRACT

Two species of black flies (Simuliidae) in Thailand, Simulium chumpornense Takaoka and Kuvangkadilok, 2000, and S. khelangense Takaoka, Srisuka & Saeung, 2022, are potent vectors of avian blood protozoa of the genera Leucocytozoon and Trypanosoma and are pests of domestic avian species. Although the adults are abundant throughout Thailand, information on their breeding habitats is limited, and the immature stages of S. khelangense are unknown. We collected the larvae and pupae of S. khelangense from the Mekong River, the first-ever record of Simuliidae from this large continental river. Mitochondrial cytochrome c oxidase I and internal transcribed spacer 2 were used to associate the larvae and pupae with known adults. Both genetic markers strongly supported their identity as S. khelangense. The larvae and pupa of S. khelangense are described. The pupal gill filaments, larval abdominal protuberances, and setae distinguish this species from other members of the S. varicorne species group. The immature stages of S. chumpornense inhabit a wide variety of flowing waters, from small streams (3 m wide) to enormous continental rivers (400 m wide); thus, S. chumpornense is a habitat generalist. In contrast, S. khelangense was found only in the large Mekong River and is, therefore, a habitat specialist. Both species can exploit their principal habitats and produce abundant adult populations.

3.
Acta Trop ; 254: 107207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579961

ABSTRACT

Species of the Simulium varicorne group in Thailand have veterinary significance as vectors of haemosporidian parasites. Accurate identification is, therefore, critical to the study of vectors and parasites. We used morphology and molecular markers to investigate cryptic genetic lineages in samples identified as Simulium chumpornense Takaoka & Kuvangkadilok, 2000. We also tested the efficiency of the nuclear internal transcribed spacer 2 (ITS2) marker for the identification of species in this group. Morphological examinations revealed that S. chumpornense lineage A is most similar to S. khelangense Takaoka, Srisuka & Saeung, 2022, with minor morphological differences. They are also genetically similar based on mitochondrial cytochrome c oxidase I (COI) sequences. Geographically, the sampling site where paratypes of S. khelangense were originally collected is <50 km from where S. chumpornense lineage A was collected. We concluded that cryptic lineage A of S. chumpornense is actually S. khelangense. COI sequences could not differentiate S. kuvangkadilokae Pramual and Tangkawanit, 2008 from S. chumpornense and S. khelangense. In contrast, ITS2 sequences provided perfect accuracy in the identification of these species. Molecular analyses of the blood protozoa Leucocytozoon and Trypanosoma demonstrated that S. khelangense carries L. shoutedeni, Leucocytozoon sp., and Trypanosoma avium. The Leucocytozoon sp. in S. khelangense differs genetically from that in S. asakoae Takaoka & Davies, 1995, signaling the possibility of vector-parasite specificity.


Subject(s)
Electron Transport Complex IV , Phylogeny , Simuliidae , Animals , Simuliidae/parasitology , Simuliidae/genetics , Simuliidae/classification , Thailand , Electron Transport Complex IV/genetics , DNA, Protozoan/genetics , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Haemosporida/genetics , Haemosporida/isolation & purification , Haemosporida/classification
4.
Insects ; 15(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38535346

ABSTRACT

Discoveries of endemic species highlight areas of biogeographic and conservation interest. Endemic species, however, are often morphologically disguised as more common and widespread species. The larval polytene chromosomes revealed a new species of black fly, Prosimulium fungiforme, from the Djurdjura Mountains of northern Algeria, and its female, male, pupa, and larva are described. The species is chromosomally unique; none of its 11 chromosomal rearrangements are shared with other species. Although the new species structurally resembles Prosimulium rufipes (Meigen) with which it previously has been confused, it can be distinguished from all other known species of Prosimulium in the Western Palearctic based on at least one character in each described life stage. Symbiotic organisms included two species of microsporidia, at least one of which is probably undescribed, one unknown protozoan pathogen novel in simuliids, and the trichomycete fungus Harpella melusinae Léger and Duboscq. Associated simuliid species included at least one new species of the genus Helodon. The new species of Prosimulium is tentatively considered endemic to the mountains of northern Algeria but might be expected in the mountains of eastern Morocco and northern Tunisia and perhaps in Sicily. If its endemic status holds, it would be the only nominal species of black fly unique to Algeria.

5.
PLoS One ; 18(11): e0293547, 2023.
Article in English | MEDLINE | ID: mdl-37948378

ABSTRACT

The family Simuliidae includes more than 2000 species of black flies worldwide. Their morphological uniformity creates difficulty for species identification, which limits our knowledge of their ecology and vectorial role. We investigated the systematics of black flies in a semi-arid area of the Iberian Peninsula, an ecologically harsh environment for these organisms. Sampling adult black flies in three different habitats (by means of CDC traps) and in avian nest boxes and collecting immature stages in high-salinity rills provided a representative sample of the component species. A combination of approaches, including morphological, chromosomal, and molecular (based on the mitochondrial cytochrome C oxidase subunit I (COI) and internal transcribed spacer 2 (ITS2) genes) revealed five species: four common species (Simulium intermedium, S. petricolum, S. pseudequinum, and S. rubzovianum) and the first European record for S. mellah. Barcoding gap and phylogenetic analyses revealed that ITS2 is a key marker to identify the species, whereas the COI marker does not provide enough resolution to identify some species or infer their phylogenetic relationships. Morphological and chromosomal features are also provided to identify S. mellah unequivocally. Our study highlights the need for integrated studies of black flies in ecologically extreme habitats to increase our knowledge of their distribution, ecology, and potential risks for public health.


Subject(s)
Simuliidae , Animals , Simuliidae/genetics , Phylogeny , Ecosystem , Ecology , Europe
6.
Sci Rep ; 13(1): 14585, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666968

ABSTRACT

Black flies are blood-sucking insects of public health importance, and they are effective vectors of pathogens and parasites, such as filarial nematodes of the genus Onchocerca. Our previous surveys have shown that individuals of Simulium turgaicum are annoying pests of humans and livestock in the Aras River Basin of Iran. In the present study, adult black flies of S. turgaicum were trapped from different ecotopes of five villages in Khoda-Afarin County, Iran. By using a sensitive nested PCR assay and targeting the nuclear 18S rDNA-ITS1 marker, filarial infections were found in 38 (1.89%) of 2005 black flies. Homology exploration of 360 bp of the sequences indicated that the filarial worms are members of the family Onchocercidae, with maximum alignment scores of 93-95%. Phylogenetic analysis showed that two Iranian Onchocerca isolates were clustered in the O. fasciata-O. volvulus lineage and were well separated from other filarial nematodes. Both the entomological evidence (empty abdomen of the specimens) and climatologic data (adequate accumulated degree days for development) suggest that the filarial DNA was probably that of infective larvae of vertebrates. This is the first report of an infection by Onchocerca species in S. turgaicum and the first record of onchocercids in black flies in Iran; however, more research is required to demonstrate transmission of these filarial worms by black flies in nature.


Subject(s)
Simuliidae , Adult , Animals , Humans , Onchocerca/genetics , Iran , Phylogeny , Larva
7.
J Exp Biol ; 226(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37724664

ABSTRACT

Hovering hawkmoths expend significant energy while feeding, which should select for greater feeding efficiency. Although increased feeding efficiency has been implicitly assumed, it has never been assessed. We hypothesized that hawkmoths have proboscises specialized for gathering nectar passively. Using contact angle and capillary pressure to evaluate capillary action of the proboscis, we conducted a comparative analysis of wetting and absorption properties for 13 species of hawkmoths. We showed that all 13 species have a hydrophilic proboscis. In contradistinction, the proboscises of all other tested lepidopteran species have a wetting dichotomy with only the distal ∼10% hydrophilic. Longer proboscises are more wettable, suggesting that species of hawkmoths with long proboscises are more efficient at acquiring nectar by the proboscis surface than are species with shorter proboscises. All hawkmoth species also show strong capillary pressure, which, together with the feeding behaviors we observed, ensures that nectar will be delivered to the food canal efficiently. The patterns we found suggest that different subfamilies of hawkmoths use different feeding strategies. Our comparative approach reveals that hawkmoths are unique among Lepidoptera and highlights the importance of considering the physical characteristics of the proboscis to understand the evolution and diversification of hawkmoths.


Subject(s)
Butterflies , Manduca , Animals , Plant Nectar , Wettability , Feeding Behavior
8.
Parasit Vectors ; 16(1): 266, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37545007

ABSTRACT

BACKGROUND: Prompt and precise identification of black flies (Simuliidae) is crucial, given their biting behaviour and significant impact on human and animal health. To address the challenges presented by morphology and chromosomes in black fly taxonomy, along with the limited availability of molecular data pertaining to the black fly fauna in Vietnam, this study employed DNA-based approaches. Specifically, we used mitochondrial and nuclear-encoded genes to distinguish nominal species of black flies in Vietnam. METHODS: In this study, 135 mitochondrial cytochrome c oxidase subunit I (COI) sequences were established for 45 species in the genus Simulium in Vietnam, encompassing three subgenera (Gomphostilbia, Nevermannia, and Simulium), with 64 paratypes of 27 species and 16 topotypes of six species. Of these COI sequences, 71, representing 27 species, are reported for the first time. RESULTS: Combined with GenBank sequences of specimens from Malaysia, Myanmar, Thailand, and Vietnam, a total of 234 DNA barcodes of 53 nominal species resulted in a 71% success rate for species identification. Species from the non-monophyletic Simulium asakoae, S. feuerborni, S. multistriatum, S. striatum, S. tuberosum, and S. variegatum species groups were associated with ambiguous or incorrect identifications. Pairwise distances, phylogenetics, and species delimitation analyses revealed a high level of cryptic diversity, with discovery of 15 cryptic taxa. The current study also revealed the limited utility of a fast-evolving nuclear gene, big zinc finger (BZF), in discriminating closely related, morphologically similar nominal species of the S. asakoae species group. CONCLUSION: This study represents the first comprehensive molecular genetic analysis of the black fly fauna in Vietnam to our knowledge, providing a foundation for future research. DNA barcoding exhibits varying levels of differentiating efficiency across species groups but is valuable in the discovery of cryptic diversity.


Subject(s)
Bites and Stings , Simuliidae , Animals , Humans , Simuliidae/genetics , Vietnam , DNA Barcoding, Taxonomic/methods , Phylogeny , Thailand , Larva
9.
Parasit Vectors ; 16(1): 248, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480109

ABSTRACT

BACKGROUND: DNA barcoding is a valuable taxonomic tool for rapid and accurate species identification and cryptic species discovery in black flies. Indonesia has 143 nominal species of black flies, but information on their biological aspects, including vectorial capacity and biting habits, remains underreported, in part because of identification problems. The current study represents the first comprehensive DNA barcoding of Indonesian black flies using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested. RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa. CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.


Subject(s)
DNA Barcoding, Taxonomic , Simuliidae , Animals , Indonesia , Simuliidae/genetics
10.
Acta Trop ; 246: 106988, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454710

ABSTRACT

Rapid and accurate identification is a prerequisite for the study of all aspects of species, particularly for pests and vectors. Black flies are economically significant blood-sucking insects, as many species are pests and vectors that transmit parasites to humans and other animals. We examined the efficiency of two fast-evolving nuclear genes, elongator complex protein 1 (ECP1) and big zinc finger (BZF), for identifying 13 nominal species in three species-groups of black flies, the Simulium multistriatum, S. striatum, and S. tuberosum groups, in Thailand where the mitochondrial cytochrome c oxidase I (COI) gene has not been successful for differentiating many nominal species. ECP1 gene sequences were highly effective for identification, with >96% (181 of 188) of the specimens correctly identified. Unsuccessful identifications based on ECP1 were between S. nakhonense and S. chiangmaiense, which are members of the S. striatum species-group, whereas all identifications of nominal species of the S. multistriatum and S. tuberosum species-groups were successful. In contrast, BZF had successful rates for the S. striatum species-group, with >93% (71 of 76) of the specimens correctly identified. This gene also successfully assigned unknown larvae of the S. striatum group to species. Phylogenetic analyses and molecular species delimitations based on the BZF gene uncovered cryptic diversity in two nominal species, S. nakhonense and S. wangkwaiense, which will require resolution through further study.


Subject(s)
Simuliidae , Humans , Animals , Simuliidae/genetics , Thailand , Phylogeny , Larva/genetics , Electron Transport Complex IV/genetics
11.
Proc Biol Sci ; 290(1997): 20222185, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122259

ABSTRACT

Viscosity determines the resistance of haemolymph flow through the insect body. For flying insects, viscosity is a major physiological parameter limiting flight performance by controlling the flow rate of fuel to the flight muscles, circulating nutrients and rapidly removing metabolic waste products. The more viscous the haemolymph, the greater the metabolic energy needed to pump it through confined spaces. By employing magnetic rotational spectroscopy with nickel nanorods, we showed that viscosity of haemolymph in resting hawkmoths (Sphingidae) depends on wing size non-monotonically. Viscosity increases for small hawkmoths with high wingbeat frequencies, reaches a maximum for middle-sized hawkmoths with moderate wingbeat frequencies, and decreases in large hawkmoths with slower wingbeat frequencies but greater lift. Accordingly, hawkmoths with small and large wings have viscosities approaching that of water, whereas hawkmoths with mid-sized wings have more than twofold greater viscosity. The metabolic demands of flight correlate with significant changes in circulatory strategies via modulation of haemolymph viscosity. Thus, the evolution of hovering flight would require fine-tuned viscosity adjustments to balance the need for the haemolymph to carry more fuel to the flight muscles while decreasing the viscous dissipation associated with its circulation.


Subject(s)
Flight, Animal , Moths , Animals , Viscosity , Flight, Animal/physiology , Biomechanical Phenomena , Insecta , Wings, Animal/physiology
12.
Insects ; 13(10)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36292851

ABSTRACT

One of the most popular tools for species discovery and resolution is the DNA barcode, typically based on the cytochrome c oxidase I (COI) gene. However, other non-genic barcodes are available for Diptera. The banding sequence of polytene chromosomes in some dipteran cells, particularly of the larval silk glands, can provide a unique species barcode. We used the sequence of bands to reveal a new species of black fly in the Simulium (Boreosimulium) annulus species group from California, USA. To further characterize the species and provide more integrated taxonomy, we morphologically described all life stages above the egg, formally named the species Simulium ustulatum n. sp., and provided a conventional COI barcode. The COI barcode confirmed the chromosomal and morphological evidence that the species is a new member of the S. annulus group, and enabled identification of the larva and female, which are structurally similar to those of other species. The chromosomal barcode shows that this species has the most rearranged complement, compared with the eight other North American members of its species group, with up to 12 times the number of fixed rearrangements. Up to six chromosomal rearrangements, including autosomal polymorphisms and sex-linked phenomena, are shared with other members of the group. The most unique and conspicuous chromosomal feature of this new species is a large, pale-staining chromocenter from which the six chromosomal arms radiate. The distribution of this univoltine species in lowland rivers of California's Central Valley could make it vulnerable, given climate change and increasing land development.

13.
Acta Biomater ; 147: 102-119, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35649508

ABSTRACT

Insect antennae are hollow, blood-filled fibers with complex shape. Muscles in the two basal segments control antennal movement, but the rest (flagellum) is muscle-free. The insect can controllably flex, twist, and maneuver its antennae laterally. To explain this behavior, we performed a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly). These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle or strain-adaptive fibers that stiffen when stretched. Scanning electron microscopy and high-speed imaging of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation in antennae. A generalized Lamé theory of solid mechanics was developed to include the force-driven deformation of blood-filled antennal tubes. We validated the theory against experiments with artificial antennae with no adjustable parameters. Blood pressure increased when the insect inflated its antennae or decreased below ambient pressure when an external tensile load was applied to the antenna. The pressure-cuticle coupling can be controlled through changes of the blood volume in the antennal lumen. In insects that do not fill the antennal lumen with blood, this blood pressure control is lacking, and the antennae react only by muscular activation. We suggest that the principles we have discovered for insect antennae apply to other appendages that share a leg-derived ancestry. Our work offers promising new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the same fluid on demand. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. To explain this behavior, we examined structure-function relationships of antennae of cockroaches, hawkmoths, and butterflies. Hawkmoth antennae behaved as brittle fibers, but butterfly and cockroach antennae showed strain-adaptive behavior like fibers that stiffen when stretched. Videomicroscopy of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation. Our solid mechanics model explains this behavior. Because antennae are leg-derived appendages, we suggest that the principles we found apply to other appendages of leg-derived ancestry. Our work offers new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the fluid on demand.


Subject(s)
Butterflies , Periplaneta , Animals , Arthropod Antennae/physiology , Blood Pressure , Humans , Insecta , Movement , Periplaneta/physiology
14.
Acta Trop ; 230: 106386, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35248580

ABSTRACT

Mermithids are parasites of black flies that cause host mortality along with physical and behavioural changes in infected hosts. However, there is a lack of knowledge on the distribution of mermithids infecting black fly larvae and the factors that influence these distributions in Asia, including Malaysia. A total of 13,116 mid- to late-instar black fly larvae belonging to 42 species were collected from 138 streams across East and West Malaysia and screened for the presence of mermithid parasites. Overall, 121 mermithids were obtained from 107 (0.82%) larvae of nine (21.4%) black fly species. The average number of mermithids per black fly host was 1.10 ± 0.04 (SE), ranging from one to three mermithids per host. Mermithid infection was highest in Simulium trangense, with a frequency of occurrence of 6.5%, followed by S. cheongi (5.8%) and S. angulistylum complex (2.9%). Infection was lowest in S. brevipar and S. tahanense, with a frequency of occurrence of 0.7% each. Regression analysis indicated that mermithid infections in larval black flies were significantly associated with cooler and shallower streams with more canopy cover, dense riparian vegetation, high dissolved oxygen, and lower conductivity and complete pH. Forward logistic regression further indicated that infections in S. cheongi were associated with shaded, cooler, slightly acidic streams with higher conductivity and dissolved oxygen. These findings suggest that mermithid infections in larval black flies in Malaysia are not randomly distributed and are influenced by the breeding habitat of their hosts.


Subject(s)
Mermithoidea , Parasites , Simuliidae , Animals , Larva , Malaysia/epidemiology , Oxygen , Simuliidae/parasitology
15.
Zootaxa ; 5040(1): 132-140, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34811050

ABSTRACT

Simulium hasekei new species is described from the Alps of Austria. It is characterized by a broad trapezoidal ventral plate in the male, long straight arms of the genital fork in the female, a well-developed anterodorsal projection on the weakly woven cocoon, and a deep rounded postgenal cleft and strong paralateral hypostomal teeth in the larva. The species is chromosomally most similar to the Holarctic S. bicorne Dorogostaisky, Rubtsov Vlasenko and S. fontinale Radzivilovskaya and the Nearctic S. craigi Adler Currie. It is known from one small ponor brook, in association with S. aureum (Fries) s. s., S. beltukovae (Rubtsov), and Simulium vernum Macquart s. s.


Subject(s)
Simuliidae , Animals , Austria , Calcium Carbonate , Female , Larva , Male , Pupa
16.
Insects ; 12(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34564256

ABSTRACT

By any measure, such as abundance, species diversity or geographic range, the Simulium ornatum species group is one of the most successful Palearctic taxa of black flies. To explore potential diversity in this group in the Tian Shan range of Central Asia, we focused on Kyrgyzstan, in which three nominal morphospecies have been recorded. Among our samples, we morphologically identified S. mesasiaticum Rubtsov and a second possible species tentatively identified as S. ferganicum Rubtsov. By analyzing banding patterns of the larval polytene chromosomes, we discovered two fixed inversions, two sex-linked rearrangements, and 19 autosomal rearrangements, including supernumerary B chromosomes. The chromosomal data indicate minimal diversity of only one or two species across the surveyed area of nearly 50,000 km2. Mitochondrial DNA (CO1) sequences fell into three distinct clusters, possibly representing separate species. The chromosomal, molecular, and morphological data indicate that Kyrgyz populations are unique within the S. ornatum group, but the data sets are not entirely congruent. Thus, reconciling data sets and assigning existing names is tentative. Simulium mesasiaticum is linked with undifferentiated sex chromosomes, one of the three CO1 clades, and higher elevations, whereas S. ferganicum is tenuously associated with differentiated sex chromosomes, a separate CO1 clade, and lower elevations. These associations leave one Kyrgyz larva, which is in a third CO1 clade, unlinked to a formal species name. Our analyses also indicate that S. ornatum Meigen sensu stricto, contrary to previous reports, does not occur in Kyrgyzstan and should be deleted from the country's faunal list.

17.
Acta Trop ; 224: 106124, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34508715

ABSTRACT

The species status of two cytoforms of two species complexes in the Simulium (Simulium) tuberosum species-group, which are almost indistinguishable in the pupal stage, was morphologically and genetically evaluated. Cytoform 'L' of the S. (S.) tani Takaoka & Davies complex, previously recognized as S. (S.) suzukii Rubtsov in Taiwan, is described as a new species, S. (S.) jianshiense. It is morphologically distinguishable as adults from two members of the S. (S.) suzukii complex: cytoform 'C' from Hokkaido, selected to represent the type of S. (S.) suzukii sensu stricto, and cytoform 'D' from Okinawa Island and, based on our chromosomal analysis, also from Amami Island. This new species is genetically separated from both cytoforms of the S. (S.) suzukii complex with a genetic distance of 5.31-6.67%. Cytoform 'D' is distinguished from cytoform 'C' by the color of the male forecoxa and relative length of the female sensory vesicle to the third maxillary palpomere. Accordingly, the name S. (S.) ryukyuense Ogata, once regarded as a synonym of S. (S.) suzukii, is revalidated and applied to cytoform 'D'. The genetic distance between S. (S.) ryukyuense and S. (S.) suzukii sensu stricto is 1.24-1.60%.


Subject(s)
Simuliidae , Animals , Female , Islands , Japan , Male , Pupa , Simuliidae/genetics , Taiwan
18.
J Colloid Interface Sci ; 601: 734-745, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34098448

ABSTRACT

HYPOTHESIS: Self-repair in living organisms, without tissue regeneration or regrowth, is rare. Recent discovery that butterflies can self-repair the proboscis after the two halves (galeae) have been separated raised a question about the physical mechanism allowing them to reunite the parts. We discovered that butterflies pump saliva during repair of their proboscises. We then hypothesized that saliva spreading along the food canal of the proboscis would create capillary forces capable of bringing the galeae together. EXPERIMENT: To test the hypothesis, we distinguished capillary forces from muscular action of the galeae by sedating butterflies and video tracking retraction of the saliva menisci during galeal separation. To theoretically show capillary adhesion, the elastic moduli of the galeae were measured, and the galeal profiles were extracted from videos as a function of time. The values were then fitted with a mathematical model based on an augmented Euler-Bernoulli beam theory whereby each galea was treated as a beam bent by capillary forces due to saliva. We also evaluated friction forces that prevented disjoining of the galea at the tip of their separation. FINDINGS: The results showed that butterflies use saliva to repair their proboscises via capillary adhesion, and theoretically supported the role of saliva in providing the necessary capillary forces to bring the galeae together. Tangential shear forces acting parallel to the galea at the tip of their separation are caused primarily by friction between the cuticular linking structures.


Subject(s)
Butterflies , Moths , Animals , Friction , Gastrointestinal Tract , Saliva
19.
Acta Trop ; 219: 105923, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33878305

ABSTRACT

Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed ß-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.


Subject(s)
Bacteria/growth & development , Bacteria/isolation & purification , Larva/microbiology , Simuliidae/microbiology , Animals , Bacteria/drug effects , Bacteria/genetics , Culture Techniques , Drug Resistance, Bacterial , Larva/classification , RNA, Ribosomal, 16S/genetics , Simuliidae/classification
20.
Vet Parasitol ; 292: 109394, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33689962

ABSTRACT

Hypodermins A (HA), B (HB), and C (HC) of warble flies are modulatory antigens involved in host inflammation and immune responses during migration of the warble fly larvae through host connective tissues. In the current study, molecular characteristics of the genes encoding HA, HB, and HC were revealed from cDNA constructs of third-instar larvae of Hypoderma bovis. The open reading frame (ORF) of each hypodermin gene was amplified with modified gene-specific primers, and the resulting PCR products were cloned into pGEM-T Easy Vector to produce recombinant plasmids (rHA, rHB, and rHC). The ORF sequences of rHA, rHB, and rHC genes are 705 bp, 771 bp, and 783 bp long and encode proteins of 234, 256, and 263 amino acids with predicted sizes of 25.74 kDa, 27.79 kDa, and 28.51 kDa, respectively. The rHC gene was subcloned into the pET 100/D-TOPO Expression Vector, and the recombinant HC was purified using affinity chromatography. Western blotting indicated that rHC was recognized by the sera of cattle naturally infested with H. bovis. The rHC and a synthetic peptide (sHC) containing its linear B cell-specific epitope were evaluated as serological markers in indirect ELISA (iELISA) for the diagnosis of bovine hypodermosis. Both sHC and rHC iELISAs had sensitivity values equal to or higher than 90 % and specificity values of 100 %. A total of 200 serum samples from cattle in the Central Anatolia Region of Turkey were also analyzed by rHC and sHC-iELISAs to reveal the seroprevalence of bovine hypodermosis. The results of both iELISAs were consistent with one another and revealed a hypodermosis prevalence of 62 %. Our study provides the first data on molecular characterization of hypodermin genes of H. bovis and indicates the efficacy of recombinant antigen and peptide-based iELISA for serodiagnosis of bovine hypodermosis.


Subject(s)
Cattle Diseases/parasitology , Diptera/genetics , Myiasis/veterinary , Serine Endopeptidases/genetics , Serologic Tests/veterinary , Animals , Cattle , Cattle Diseases/blood , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Cloning, Molecular , Epitopes, B-Lymphocyte/genetics , Myiasis/diagnosis , Myiasis/epidemiology , Myiasis/pathology , Phylogeny , Recombinant Proteins , Serine Endopeptidases/blood , Serine Endopeptidases/immunology , Turkey/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...