Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(5): 1659-1665, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36745111

ABSTRACT

The interfacial interaction of 2D materials with the substrate leads to striking surface faceting affecting its electronic properties. Here, we quantitatively study the orientation-dependent facet topographies observed on the catalyst under graphene using electron backscatter diffraction and atomic force microscopy. The original flat catalyst surface transforms into two facets: a low-energy low-index surface, e.g. (111), and a vicinal (high-index) surface. The critical role of graphene strain, besides anisotropic interfacial energy, in forming the observed topographies is revealed by molecular simulations. These insights are applicable to other 2D/3D heterostructures.

2.
J Chem Phys ; 134(18): 184106, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21568496

ABSTRACT

A two-step unified framework for the evaluation of continuum field expressions from molecular simulations for arbitrary interatomic potentials is presented. First, pointwise continuum fields are obtained using a generalization of the Irving-Kirkwood procedure to arbitrary multibody potentials. Two ambiguities associated with the original Irving-Kirkwood procedure (which was limited to pair potential interactions) are addressed in its generalization. The first ambiguity is due to the nonuniqueness of the decomposition of the force on an atom as a sum of central forces, which is a result of the nonuniqueness of the potential energy representation in terms of distances between the particles. This is in turn related to the shape space of the system. The second ambiguity is due to the nonuniqueness of the energy decomposition between particles. The latter can be completely avoided through an alternate derivation for the energy balance. It is found that the expressions for the specific internal energy and the heat flux obtained through the alternate derivation are quite different from the original Irving-Kirkwood procedure and appear to be more physically reasonable. Next, in the second step of the unified framework, spatial averaging is applied to the pointwise field to obtain the corresponding macroscopic quantities. These lead to expressions suitable for computation in molecular dynamics simulations. It is shown that the important commonly-used microscopic definitions for the stress tensor and heat flux vector are recovered in this process as special cases (generalized to arbitrary multibody potentials). Several numerical experiments are conducted to compare the new expression for the specific internal energy with the original one.

SELECTION OF CITATIONS
SEARCH DETAIL
...