Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Clin Med ; 10(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768332

ABSTRACT

Significant treatment variation exists in the Netherlands between teams treating patients with cleft lip, alveolus, and/or palate, resulting in a confusing and undesirable situation for patients, parents, and practitioners. Therefore, to optimize cleft care, clinical practice guidelines (CPGs) were developed. The aim of this report is to describe CPG development, share the main recommendations, and indicate knowledge gaps regarding cleft care. Together with patients and parents, a multidisciplinary working group of representatives from all relevant disciplines assisted by two experienced epidemiologists identified the topics to be addressed in the CPGs. Searching the Medline, Embase, and Cochrane Library databases identified 5157 articles, 60 of which remained after applying inclusion and exclusion criteria. We rated the quality of the evidence from moderate to very low. The working group formulated 71 recommendations regarding genetic testing, feeding, lip and palate closure, hearing, hypernasality, bone grafting, orthodontics, psychosocial guidance, dentistry, osteotomy versus distraction, and rhinoplasty. The final CPGs were obtained after review by all stakeholders and allow cleft teams to base their treatment on current knowledge. With high-quality evidence lacking, the need for additional high-quality studies has become apparent.

2.
Hum Genet ; 138(1): 61-72, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30535804

ABSTRACT

ATP2B2 encodes the PMCA2 Ca2+ pump that plays an important role in maintaining ion homeostasis in hair cells among others by extrusion of Ca2+ from the stereocilia to the endolymph. Several mouse models have been described for this gene; mice heterozygous for loss-of-function defects display a rapidly progressive high-frequency hearing impairment. Up to now ATP2B2 has only been reported as a modifier, or in a digenic mechanism with CDH23 for hearing impairment in humans. Whole exome sequencing in hearing impaired index cases of Dutch and Polish origins revealed five novel heterozygous (predicted to be) loss-of-function variants of ATP2B2. Two variants, c.1963G>T (p.Glu655*) and c.955delG (p.Ala319fs), occurred de novo. Three variants c.397+1G>A (p.?), c.1998C>A (p.Cys666*), and c.2329C>T (p.Arg777*), were identified in families with an autosomal dominant inheritance pattern of hearing impairment. After normal newborn hearing screening, a rapidly progressive high-frequency hearing impairment was diagnosed at the age of about 3-6 years. Subjects had no balance complaints and vestibular testing did not yield abnormalities. There was no evidence for retrocochlear pathology or structural inner ear abnormalities. Although a digenic inheritance pattern of hearing impairment has been reported for heterozygous missense variants of ATP2B2 and CDH23, our findings indicate a monogenic cause of hearing impairment in cases with loss-of-function variants of ATP2B2.


Subject(s)
Biomarkers/analysis , Genetic Predisposition to Disease , Hearing Loss/genetics , Mutation , Plasma Membrane Calcium-Transporting ATPases/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Follow-Up Studies , Heterozygote , Humans , Male , Middle Aged , Pedigree , Prognosis , Young Adult
3.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29961571

ABSTRACT

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Subject(s)
Cell Adhesion Molecules/genetics , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/genetics , Hearing/genetics , Animals , Cell Adhesion/genetics , Cochlea/pathology , Deafness/genetics , Epithelium/pathology , Female , Homozygote , Humans , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Neurons/pathology , Spiral Ganglion/pathology
4.
Hum Genet ; 137(5): 389-400, 2018 May.
Article in English | MEDLINE | ID: mdl-29754270

ABSTRACT

Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.


Subject(s)
Hearing Loss/genetics , Heterozygote , LIM-Homeodomain Proteins/genetics , Mutation, Missense , Transcription Factors/genetics , Vestibular Diseases/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Child, Preschool , Female , Humans , Male , Middle Aged
5.
Int J Pediatr Otorhinolaryngol ; 97: 228-234, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28483241

ABSTRACT

Existing literature only reports a few patients with Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) who underwent cochlear implantation (CI). The present study describes four NS patients and one NSML patient with a PTPN11 mutation. They all had severe to profound hearing loss, and they received a CI. The age at which the CI surgery occurred ranged from 1 to 13 years old, and the audiological results in all five patients improved after the CI. Otological and audiological examinations in NS and NSML are important, and for those with severe hearing loss, the CI surgery improved the audiological outcome regardless of age.


Subject(s)
Cochlear Implantation/methods , Hearing Loss/surgery , LEOPARD Syndrome/therapy , Noonan Syndrome/therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adolescent , Audiometry , Child , Child, Preschool , Female , Humans , Infant , LEOPARD Syndrome/genetics , Male , Mutation , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Retrospective Studies
6.
Hear Res ; 347: 56-62, 2017 04.
Article in English | MEDLINE | ID: mdl-28089734

ABSTRACT

DFNB28 is characterized by prelingual, severe to profound sensorineural hearing impairment (HI). It is associated with mutations in exon 6 and 7 of TRIOBP and has not been reported in the European population. Here, we describe two isolated cases of Dutch origin with congenital, moderate HI and compound heterozygous mutations in TRIOBP. Three of the mutations are novel, one nonsense mutation (c.5014G>T (p.Gly1672*)) and two frameshift mutations (c.2653del (p.Arg885Alafs*120) and c.3460_3461del (p.Leu1154Alafs*29)). The fourth mutation is the known c.3232dup (p.Arg1078Profs*6) mutation. Longitudinal audiometric analyses in one of the subjects revealed that HI was stable over a period of 15 years. Vestibular function was normal. Predicted effects of the mutations do not explain the relatively mild phenotype in the presented subjects, whereas location of the mutation might well contribute to the milder HI in one of the subjects. It is known that isoform classes TRIOBP-4 and TRIOBP-5 are important for stereocilia stability and rigidity. To our knowledge, p.Gly1672* is the first pathogenic variant identified in DFNB28 that does not affect isoform class TRIOBP-4. This suggests that a single TRIOBP copy to encode wildtype TRIOBP-4 is insufficient for normal hearing, and that at least one TRIOBP copy to encode TRIOBP-5 is indispensable for normal inner ear function. Furthermore, this study demonstrates that DFNB28 can be milder than reported so far and that mutations in TRIOBP are thus associated with a heterogeneous phenotype.


Subject(s)
Codon, Nonsense , Frameshift Mutation , Hearing Loss, Sensorineural/genetics , Hearing/genetics , Microfilament Proteins/genetics , Auditory Threshold , DNA Mutational Analysis , Genetic Markers , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/physiopathology , Hearing Loss, Sensorineural/psychology , Hearing Tests , Heredity , Humans , Pedigree , Phenotype , Risk Factors , Severity of Illness Index
7.
Eur J Hum Genet ; 25(3): 308-314, 2017 02.
Article in English | MEDLINE | ID: mdl-28000701

ABSTRACT

Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES.


Subject(s)
Exome , Genetic Testing/statistics & numerical data , Hearing Loss/genetics , Sequence Analysis, DNA/statistics & numerical data , Connexin 26 , Connexins/genetics , DNA Copy Number Variations , Extracellular Matrix Proteins/genetics , GPI-Linked Proteins/genetics , Genetic Testing/standards , Hearing Loss/diagnosis , Hearing Loss/epidemiology , Humans , Intercellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Mutation , Myosin Heavy Chains/genetics , Myosins/genetics , Netherlands , Sequence Analysis, DNA/standards
8.
Audiol Neurootol ; 21(3): 187-94, 2016.
Article in English | MEDLINE | ID: mdl-27245679

ABSTRACT

OBJECTIVE: To analyse the benefit of cochlear implantation in young deaf children with Waardenburg syndrome (WS) compared to a reference group of young deaf children without additional disabilities. METHOD: A retrospective study was conducted on children with WS who underwent cochlear implantation at the age of 2 years or younger. The post-operative results for speech perception (phonetically balanced standard Dutch consonant-vocal-consonant word lists) and language comprehension (the Reynell Developmental Language Scales, RDLS), expressed as a language quotient (LQ), were compared between the WS group and the reference group by using multiple linear regression analysis. RESULTS: A total of 14 children were diagnosed with WS, and 6 of them had additional disabilities. The WS children were implanted at a mean age of 1.6 years and the 48 children of the reference group at a mean age of 1.3 years. The WS children had a mean phoneme score of 80% and a mean LQ of 0.74 at 3 years post-implantation, and these results were comparable to those of the reference group. Only the factor additional disabilities had a significant negative influence on auditory perception and language comprehension. CONCLUSIONS: Children with WS performed similarly to the reference group in the present study, and these outcomes are in line with the previous literature. Although good counselling about additional disabilities concomitant to the syndrome is relevant, cochlear implantation is a good rehabilitation method for children with WS.


Subject(s)
Cochlear Implantation , Deafness/rehabilitation , Language Development , Speech Perception , Waardenburg Syndrome/rehabilitation , Auditory Perception , Case-Control Studies , Child, Preschool , Cochlear Implants , Comprehension , Deafness/etiology , Female , Humans , Infant , Language , Linear Models , Male , Retrospective Studies , Waardenburg Syndrome/complications
9.
Birth Defects Res A Clin Mol Teratol ; 106(8): 675-84, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27150573

ABSTRACT

BACKGROUND: Research regarding the etiology of birth defects and childhood cancer is essential to develop preventive measures, but often requires large study populations. Therefore, we established the AGORA data- and biobank in the Netherlands. In this study, we describe its rationale, design, and ongoing data collection. METHODS: Children diagnosed with and/or treated for a structural birth defect or childhood cancer and their parents are invited to participate in the AGORA data- and biobank. Controls are recruited through random sampling from municipal registries. The parents receive questionnaires about demographics, family and pregnancy history, health status, prescribed medication, lifestyle, and occupational exposures before and during the index pregnancy. In addition, blood or saliva is collected from children and parents, while medical records are reviewed for diagnostic information. RESULTS: So far, we have collected data from over 6,860 families (3,747 birth defects, 905 childhood cancers, and 2,208 controls). The types of birth defects vary widely and comprise malformations of the digestive, respiratory, and urogenital tracts as well as facial, cardiovascular, kidney, skeletal, and central nervous system anomalies. The most frequently occurring childhood cancer types are acute lymphatic leukemia, Hodgkin and non-Hodgkin lymphoma, Wilms' tumor, and brain and spinal cord tumors. Our genetic and/or epidemiologic studies have been focused on hypospadias, anorectal malformations, congenital anomalies of the kidney and urinary tract (CAKUT), and orofacial clefts. CONCLUSION: The large AGORA data- and biobank offers great opportunities for investigating genetic and nongenetic risk factors for disorders in children and is open to collaborative initiatives. Birth Defects Research (Part A) 106:675-684, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biological Specimen Banks/organization & administration , Congenital Abnormalities/diagnosis , Databases, Factual , Neoplasms/diagnosis , Prenatal Exposure Delayed Effects/diagnosis , Adult , Case-Control Studies , Child , Child, Preschool , Congenital Abnormalities/classification , Congenital Abnormalities/genetics , Congenital Abnormalities/pathology , Female , Humans , Infant , Infant, Newborn , Life Style , Male , Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Pregnancy , Prenatal Exposure Delayed Effects/classification , Risk Factors , Surveys and Questionnaires
10.
Eur J Hum Genet ; 24(4): 542-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26173970

ABSTRACT

Variants in CIB2 can underlie either Usher syndrome type I (USH1J) or nonsyndromic hearing impairment (NSHI) (DFNB48). Here, a novel homozygous missense variant c.196C>T and compound heterozygous variants, c.[97C>T];[196C>T], were found, respectively, in two unrelated families of Dutch origin. Besides, the previously reported c.272 T>C functional missense variant in CIB2 was identified in two families of Pakistani origin. The missense variants are demonstrated not to affect subcellular localization of CIB2 in vestibular hair cells in ex vivo expression experiments. Furthermore, these variants do not affect the ATP-induced calcium responses in COS-7 cells. However, based on the residues affected, the variants are suggested to alter αIIß integrin binding. HI was nonsyndromic in all four families. However, deafness segregating with the c.272T>C variant in one Pakistani family is remarkably less severe than that in all other families with this mutation. Our results contribute to the insight in genotype-phenotype correlations of CIB2 mutations.


Subject(s)
Calcium-Binding Proteins/genetics , Calcium/metabolism , Deafness/genetics , Hair Cells, Auditory/metabolism , Adolescent , Adult , Animals , COS Cells , Calcium-Binding Proteins/metabolism , Child , Chlorocebus aethiops , Deafness/metabolism , Female , Humans , Integrin alpha2beta1/metabolism , Male , Mutation, Missense , Pedigree , Protein Binding
11.
Am J Hum Genet ; 97(5): 647-60, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26522471

ABSTRACT

Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants.


Subject(s)
Genetic Linkage , Hearing Loss, Unilateral/genetics , Mutation/genetics , Stem Cell Factor/genetics , Waardenburg Syndrome/genetics , Alleles , Animals , Female , Fluorescent Antibody Technique , Hearing Loss, Unilateral/metabolism , Hearing Loss, Unilateral/pathology , Humans , Male , Mice , NIH 3T3 Cells , Pedigree , Phenotype , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Waardenburg Syndrome/metabolism , Waardenburg Syndrome/pathology
12.
Int J Pediatr Otorhinolaryngol ; 79(6): 874-878, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25862627

ABSTRACT

OBJECTIVE: This is the first cohort in which hearing impairment and external ear anomalies in Noonan Syndrome are described extensively. METHODS: Retrospective analysis of the otorhinolaryngological and clinical genetic data from 97 Noonan Syndrome (NS) patients. Forty-four NS patients were seen by an otorhinolaryngologist for the analysis of hearing impairment. In our cohort 80 of the 97 patients were genetically tested. In 71 of these mutations were found: in 48 patients a mutation in PTPN11, in 10 patients in SOS1, in 5 patients in SHOC2, in 5 patients in RAF1, in 1 patient in MAP2K2, in 1 patient in KRAS and in 1 patient in A2ML1. RESULTS: External ear anomalies were reported in 75 NS patients (77%). In 69 patients the ears were low-set, 28 patients had posteriorly rotated ears, 14 patients showed protruding ears and 18 had thickened helices. Hearing impairment was detected in 34 NS patients. Nine patients had sensorineural hearing impairment, two a permanent conductive hearing impairment, two other patients had mixed hearing impairment and 20 patients had conductive hearing impairment in the past, caused by otitis media with effusion. Their temporary conductive hearing impairment resolved between the ages of 2 and 18 years. Sensorineural hearing impairment varied between mild high-frequency hearing impairment and profound (uni- and bilateral) hearing impairment and was progressive in three patients. Four NS patients received cochlear implants for their severe sensorineural hearing impairment. The cohort is small for genotype-phenotype correlations, but sensorineural hearing impairment, especially the bilateral severe hearing impairment, was only seen in patients with a PTPN11 mutation. CONCLUSION: NS is characterized by dysmorphic external ear anomalies and both sensorineural and conductive hearing impairment. Audiological examinations are recommended in all patients with Noonan Syndrome.


Subject(s)
Ear, External/abnormalities , Hearing Loss, Conductive/etiology , Hearing Loss, Sensorineural/etiology , Mutation , Noonan Syndrome/complications , Noonan Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Hearing Loss, Bilateral/genetics , Hearing Loss, Sensorineural/genetics , Humans , Infant , Infant, Newborn , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase 2/genetics , Male , Middle Aged , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins p21(ras) , Retrospective Studies , SOS1 Protein/genetics , Young Adult , alpha-Macroglobulins/genetics , ras Proteins/genetics
13.
Eur J Hum Genet ; 23(2): 189-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24781754

ABSTRACT

In a consanguineous Turkish family diagnosed with autosomal recessive nonsyndromic hearing impairment (arNSHI), a homozygous region of 47.4 Mb was shared by the two affected siblings on chromosome 6p21.1-q15. This region contains 247 genes including the known deafness gene MYO6. No pathogenic variants were found in MYO6, neither with sequence analysis of the coding region and splice sites nor with mRNA analysis. Subsequent candidate gene evaluation revealed CLIC5 as an excellent candidate gene. The orthologous mouse gene is mutated in the jitterbug mutant that exhibits progressive hearing impairment and vestibular dysfunction. Mutation analysis of CLIC5 revealed a homozygous nonsense mutation c.96T>A (p.(Cys32Ter)) that segregated with the hearing loss. Further analysis of CLIC5 in 213 arNSHI patients from mostly Dutch and Spanish origin did not reveal any additional pathogenic variants. CLIC5 mutations are thus not a common cause of arNSHI in these populations. The hearing loss in the present family had an onset in early childhood and progressed from mild to severe or even profound before the second decade. Impaired hearing is accompanied by vestibular areflexia and in one of the patients with mild renal dysfunction. Although we demonstrate that CLIC5 is expressed in many other human tissues, no additional symptoms were observed in these patients. In conclusion, our results show that CLIC5 is a novel arNSHI gene involved in progressive hearing impairment, vestibular and possibly mild renal dysfunction in a family of Turkish origin.


Subject(s)
Chloride Channels/genetics , Codon, Nonsense , Homozygote , Microfilament Proteins/genetics , Vestibular Diseases/genetics , Adolescent , Cell Line , Child , Chloride Channels/metabolism , Deafness/diagnosis , Deafness/genetics , Female , Humans , Infant , Male , Microfilament Proteins/metabolism , Nonsense Mediated mRNA Decay , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vestibular Diseases/diagnosis
14.
Otol Neurotol ; 35(9): 1577-84, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25133471

ABSTRACT

OBJECTIVE: To evaluate karyotype-specific ear and hearing problems in young-adult patients with Turner syndrome (TS) and assess the effects of previous treatment with oxandrolone (Ox). STUDY DESIGN: Double-blind follow-up study. SETTING: University hospital. PATIENTS: Sixty-five TS patients (mean age, 24.3 yr) previously treated with growth hormone combined with placebo, Ox 0.03 mg/kg per day, or Ox 0.06 mg/kg per day from the age of 8 years and estrogen from the age of 12 years. INTERVENTION: Ear examination was performed according to standard clinical practice. Air- and bone conduction thresholds were measured in decibel hearing level. MAIN OUTCOME MEASURES: We compared patients with total monosomy of the short arm of the X chromosome (Xp), monosomy 45,X and isochromosome 46,X,i(Xq), with patients with a partial monosomy Xp, mosaicism or other structural X chromosomal anomalies. We assessed the effect of previous Ox treatment. RESULTS: Sixty-six percent of the patients had a history of recurrent otitis media. We found hearing loss in 66% of the ears, including pure sensorineural hearing loss in 32%. Hearing thresholds in patients with a complete monosomy Xp were about 10 dB worse compared with those in patients with a partial monosomy Xp. Air- and bone conduction thresholds were not different between the placebo and Ox treatment groups. CONCLUSION: Young-adult TS individuals frequently have structural ear pathology, and many suffer from hearing loss. This indicates that careful follow-up to detect ear and hearing problems is necessary, especially for those with a monosomy 45,X or isochromosome 46,X,i(Xq). Ox does not seem to have an effect on hearing.


Subject(s)
Anabolic Agents/adverse effects , Hearing Loss/epidemiology , Oxandrolone/adverse effects , Turner Syndrome/complications , Adolescent , Adult , Anabolic Agents/administration & dosage , Double-Blind Method , Drug Therapy, Combination , Female , Follow-Up Studies , Hearing , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Hearing Tests , Human Growth Hormone/administration & dosage , Humans , Karyotype , Karyotyping , Oxandrolone/administration & dosage , Turner Syndrome/drug therapy , Turner Syndrome/genetics , Young Adult
15.
Ear Hear ; 35(3): e84-91, 2014.
Article in English | MEDLINE | ID: mdl-24378291

ABSTRACT

OBJECTIVES: Recently, OTOG and OTOGL were identified as human deafness genes. Currently, only four families are known to have autosomal recessive hearing loss based on mutations in these genes. Because the two genes code for proteins (otogelin and otogelin-like) that are strikingly similar in structure and localization in the inner ear, this study is focused on characterizing and comparing the hearing loss caused by mutations in these genes. DESIGN: To evaluate this type of hearing, an extensive set of audiometric and vestibular examinations was performed in the 13 patients from four families. RESULTS: All families show a flat to downsloping configuration of the audiogram with mild to moderate sensorineural hearing loss. Speech recognition scores remain good (>90%). Hearing loss is not significantly different in the four families and the psychophysical test results also do not differ among the families. Vestibular examinations show evidence for vestibular hyporeflexia. CONCLUSION: Because otogelin and otogelin-like are localized in the tectorial membrane, one could expect a cochlear conductive hearing loss, as was previously shown in DFNA13 (COL11A2) and DFNA8/12 (TECTA) patients. Results of psychophysical examinations, however, do not support this. Furthermore, the authors conclude that there are no phenotypic differences between hearing loss based on mutations in OTOG or OTOGL. This phenotype description will facilitate counseling of hearing loss caused by defects in either of these two genes.


Subject(s)
Hearing Loss, Sensorineural/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Otoacoustic Emissions, Spontaneous/genetics , Reflex, Abnormal/genetics , Reflex, Vestibulo-Ocular/genetics , Adolescent , Adult , Audiometry, Pure-Tone , Child , Child, Preschool , Female , Genotype , Humans , Male , Mutation , Phenotype , Reflex, Acoustic/genetics , Speech Reception Threshold Test , Vestibular Function Tests , Young Adult
16.
Clin Oral Investig ; 18(4): 1237-1244, 2014 May.
Article in English | MEDLINE | ID: mdl-23979354

ABSTRACT

OBJECTIVES: Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidental findings on CBCT scans in CLP patients. SUBJECTS AND METHODS: Initial CBCTs taken from consecutive patients (n = 187; mean age 11.7 years, range 6.9-45) with a non-syndromic orofacial cleft from January 2006 until June 2012 were systematically evaluated. Twenty-eight patients (mean age 19.3 years, range 13.2-30.9) had been subjected to ABG before their first CBCT was taken; 61 patients had a CBCT before and after ABG. Sinuses, nasopharynx, oropharynx, throat, skull, vertebrae, temporomandibular joint (TMJ), maxilla and mandible were checked for incidental findings. RESULTS: On 95.1 % of the CBCTs, incidental findings were found. The most prevalent were airway/sinus findings (56.1 %), followed by dental problems, e.g. missing teeth (52 %), nasal septum deviation (34 %), middle ear and mastoid opacification, suggestive for otitis media (10 %) and (chronic) mastoiditis (9 %), abnormal TMJ anatomy (4.9 %) and abnormal vertebral anatomy (1.6 %). In the 28 patients whose first CBCT was taken at least 2 years after ABG, bone was still present in the reconstructed cleft area except in 2 out of 12 patients with a bilateral CLP. The ABG donor site (all bone grafts were taken from the chin area) was still recognizable in over 50 % of the patients. Based on the CBCT findings, 10 % of the patients were referred for further diagnosis and 9 % for further treatment related to dental problems. CONCLUSION: Incidental findings are common on CBCTs. Compared with the literature, CLP patients have more dental, nasal and ear problems. Thus, whenever a CBCT is available, this scan should be reviewed by all specialists in the CLP team focusing on their specific background knowledge concerning symptoms and treatment of these patients. CLINICAL RELEVANCE: The high number of findings indicates that CBCT imaging is a helpful tool in the treatment of CLP patients not only related to alveolar bone grafting and orthognathic surgery but it also provides diagnostic information for almost all specialties involved in CLP treatment.


Subject(s)
Cleft Lip/diagnostic imaging , Cleft Palate/diagnostic imaging , Cone-Beam Computed Tomography , Incidental Findings , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult
17.
Am J Hum Genet ; 91(5): 883-9, 2012 11 02.
Article in English | MEDLINE | ID: mdl-23122587

ABSTRACT

Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow "U" or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.


Subject(s)
Genes, Recessive , Hearing Loss, Sensorineural/genetics , Membrane Glycoproteins/genetics , Mutation , Homozygote , Humans , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Siblings
18.
Am J Hum Genet ; 89(6): 813-9, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22152683

ABSTRACT

Congenital aural atresia (CAA) can occur as an isolated congenital malformation or in the context of a number of monogenic and chromosomal syndromes. CAA is frequently seen in individuals with an 18q deletion, which is characterized by intellectual disability, reduced white-matter myelination, foot deformities, and distinctive facial features. Previous work has indicated that a critical region for CAA is located in 18q22.3. We studied four individuals (from two families) with CAA and other features suggestive of an 18q deletion, and we detected overlapping microdeletions in 18q22.3 in both families. The minimal region of deletion overlap (72.9-73.4 Mb) contained only one known gene, TSHZ1, which was recently shown to be important for murine middle-ear development. Sequence analysis of the coding exons in TSHZ1 in a cohort of 11 individuals with isolated, nonsyndromic bilateral CAA revealed two mutations, c.723G>A (p.Trp241X) and c.946_947delinsA (p.Pro316ThrfsX16), and both mutations predicted a loss of function. Together, these results demonstrate that hemizygosity of TSHZ1 leads to congenital aural atresia as a result of haploinsufficiency.


Subject(s)
Hearing Loss/genetics , Homeodomain Proteins/genetics , Abnormalities, Multiple/genetics , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 18 , Ear Canal/abnormalities , Female , Flatfoot , Foot Deformities, Congenital/diagnostic imaging , Foot Deformities, Congenital/genetics , Genetic Association Studies , Haploinsufficiency , Hearing Loss/diagnosis , Humans , Infant , Male , Pedigree , Pregnancy , Repressor Proteins , Tomography, X-Ray Computed , Ultrasonography, Prenatal
19.
J Assoc Res Otolaryngol ; 12(6): 753-66, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21786053

ABSTRACT

In the present study, genotype-phenotype correlations in eight Dutch DFNB8/10 families with compound heterozygous mutations in TMPRSS3 were addressed. We compared the phenotypes of the families by focusing on the mutation data. The compound heterozygous variants in the TMPRSS3 gene in the present families included one novel variant, p.Val199Met, and four previously described pathogenic variants, p.Ala306Thr, p.Thr70fs, p.Ala138Glu, and p.Cys107Xfs. In addition, the p.Ala426Thr variant, which had previously been reported as a possible polymorphism, was found in one family. All affected family members reported progressive bilateral hearing impairment, with variable onset ages and progression rates. In general, the hearing impairment affected the high frequencies first, and sooner or later, depending on the mutation, the low frequencies started to deteriorate, which eventually resulted in a flat audiogram configuration. The ski-slope audiogram configuration is suggestive for the involvement of TMPRSS3. Our data suggest that not only the protein truncating mutation p.T70fs has a severe effect but also the amino acid substitutions p.Ala306Thr and p.Val199Met. A combination of two of these three mutations causes prelingual profound hearing impairment. However, in combination with the p.Ala426Thr or p.Ala138Glu mutations, a milder phenotype with postlingual onset of the hearing impairment is seen. Therefore, the latter mutations are likely to be less detrimental for protein function. Further studies are needed to distinguish possible phenotypic differences between different TMPRSS3 mutations. Evaluation of performance of patients with a cochlear implant indicated that this is a good treatment option for patients with TMPRSS3 mutations as satisfactory speech reception was reached after implantation.


Subject(s)
Genetic Association Studies , Hearing Loss, Bilateral/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation, Missense , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Adolescent , Adult , Amino Acid Substitution/genetics , Audiometry, Pure-Tone , Audiometry, Speech , Child , Child, Preschool , Cochlear Implantation , Family Health , Female , Genetic Linkage , Hearing Loss, Bilateral/diagnosis , Hearing Loss, Bilateral/therapy , Humans , Infant , Male , Pedigree , Protein Structure, Secondary , Protein Structure, Tertiary , Young Adult
20.
Am J Hum Genet ; 88(5): 628-34, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21549342

ABSTRACT

In a Dutch family with an X-linked postlingual progressive hearing impairment, a critical linkage interval was determined to span a region of 12.9 Mb flanked by the markers DXS7108 and DXS7110. This interval overlaps with the previously described DFNX4 locus and contains 75 annotated genes. Subsequent next-generation sequencing (NGS) detected one variant within the linkage interval, a nonsense mutation in SMPX. SMPX encodes the small muscle protein, X-linked (SMPX). Further screening was performed on 26 index patients from small families for which X-linked inheritance of nonsyndromic hearing impairment (NSHI) was not excluded. We detected a frameshift mutation in SMPX in one of the patients. Segregation analysis of both mutations in the families in whom they were found revealed that the mutations cosegregated with hearing impairment. Although we show that SMPX is expressed in many different organs, including the human inner ear, no obvious symptoms other than hearing impairment were observed in the patients. SMPX had previously been demonstrated to be specifically expressed in striated muscle and, therefore, seemed an unlikely candidate gene for hearing impairment. We hypothesize that SMPX functions in inner ear development and/or maintenance in the IGF-1 pathway, the integrin pathway through Rac1, or both.


Subject(s)
Codon, Nonsense , Genes, X-Linked , Hearing Loss/genetics , Muscle Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Frameshift Mutation , Hearing Loss/pathology , Humans , Insulin-Like Growth Factor I/genetics , Male , Middle Aged , Molecular Sequence Annotation , Pedigree , Polymorphism, Single Nucleotide , Sequence Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...