Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Heliyon ; 10(16): e36254, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247293

ABSTRACT

This literature review examines the impact of brand image on customer satisfaction and brand loyalty in the context of foreign tourism. Following a review of relevant literature, 13,302 articles were found for this study, including the keywords "brand image (BI)", "customer satisfaction (CS)", and "brand loyalty (BL)". Considering the required inclusion and the quality of studies, we employed the rigorous PRISMA technique for comprehensive data synthesis and evaluated 79 articles for the final review. Our findings underscore the significant impact of brand image on shaping customer satisfaction and fostering brand loyalty within the foreign tourism sector. The study enriches the literature by incorporating self-congruity theory. In addition, factors like product quality, pricing, and advertising are identified as key determinants significantly influencing the proposed relationship.

2.
Stud Health Technol Inform ; 316: 301-302, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39176732

ABSTRACT

The importance of cybersecurity in healthcare, with a focus on safeguarding sensitive patient information from unauthorized access, use, or disclosure, cannot be overstated Security breaches in this sector can have significant consequences due to the widespread use of electronic health records (EHRs) and interconnected medical devices, creating opportunities for exploitation. This work presents a first step to analyzing and organizing healthcare-specific cybersecurity problems and existing security frameworks. Special focus is put on the security risks associated with data integration centers while recognizing their role as hubs for innovation.


Subject(s)
Computer Security , Electronic Health Records , Confidentiality
3.
ACS Omega ; 9(26): 28791-28805, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973890

ABSTRACT

Nonfullerene acceptors (NFAs) have emerged as tremendous materials, efficiently advancing bulk-heterojunction organic solar cells (OSCs) technology. Unlike their fullerene counterparts, NFAs offer the unique advantage of finely tunable electronic energy levels and optical characteristics, which correspond to substantial enhancement in power conversion efficiency of OSCs. Herein, we have introduced a new series of near-infrared NFAs (AY1-AY8) to advance this technology further. Our research deeply investigates the structure-property relationship and thoroughly explores the optical, optoelectronics, photophysical, and photovoltaic characteristics of a synthetic reference molecule (R) and the modeled AY1-AY8 NFAs series. We performed advanced quantum chemical simulations using density functional theory (DFT) and time-dependent DFT methods. Additionally, we also estimated key geometric characteristics such as frontier molecular orbitals, hole-electron overlap, density of states, molecular electrostatic potential, molecular excitation and binding energies, transition density matrix, and reorganizational energy of electrons and holes and compared them with those of a synthetic reference molecule (R). Our findings show that all designed materials (AY1-AY8) exhibit red-shift absorption, improved electronic charge mobility, and low binding and excitation energies compared to R. Notably, these designed materials (AY1-AY8) display significantly narrower electronic energy gaps (E g 1.89-1.71 eV), indicating enhanced charge shifting from the highest occupied molecular orbital to lowest unoccupied molecular orbital and broadening of the absorption spectrum. Moreover, we also revealed a comprehensive study of the donor/acceptor complex of PTB7-Th/AY8 to understand charge shifting between donor and acceptor molecules. Therefore, we strongly recommend this designed (AY1-AY8) series to the experimentalists for the future development of highly efficient OSC devices.

4.
Methods Mol Biol ; 2844: 47-68, 2024.
Article in English | MEDLINE | ID: mdl-39068331

ABSTRACT

Trichoderma reesei holds immense promise for large-scale protein production, rendering it an excellent subject for deeper exploration using genetic engineering methods to achieve a comprehensive grasp of its cellular physiology. Understanding the genetic factors governing its intrinsic regulatory network is crucial, as lacking this knowledge could impede the expression of target genes. Prior and ongoing studies have concentrated on advancing new expression systems grounded in synthetic biology principles. These methodologies involve utilizing established potent promoters or engineered variations. Genomic and transcriptomic analyses have played a pivotal role in identifying robust promoters and expression systems, including light-responsive, copper-inducible, L-methionine-inducible, and Tet-On systems, among others. This chapter seeks to highlight various research endeavors focusing on tunable and constitutive promoters, the impact of different promoters on both native and foreign protein expression, the discovery of fresh promoters, and strategies conducive to future research aimed at refining and enhancing protein expression in T. reesei. Characterizing new promoters and adopting innovative expression systems hold the potential to significantly expand the molecular toolkit accessible for genetically engineering T. reesei strains. For instance, modifying potent inducible promoters such as Pcbh1 by replacing transcriptional repressors (cre1, ace1) with activators (xyr1, ace2, ace3, hap2/3/5) and integrating synthetic expression systems can result in increased production of crucial enzymes such as endoglucanases (EGLs), ß-glucosidases (BGLs), and cellobiohydrolases (CBHs). Similarly, robust constitutive promoters such as Pcdna1 can be converted into synthetic hybrid promoters by incorporating activation elements from potent inducible promoters, facilitating cellulase induction and expression even under repressive conditions. Nevertheless, further efforts are necessary to uncover innovative promoters and devise novel expression strategies to enhance the production of desired proteins on an industrial scale.


Subject(s)
Gene Expression Regulation, Fungal , Hypocreales , Promoter Regions, Genetic , Hypocreales/genetics , Genetic Engineering/methods , Synthetic Biology/methods
5.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946254

ABSTRACT

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124615, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38906061

ABSTRACT

A stable and efficient hole-transport material (HTM) is crucial for high-performance perovskite solar cells (PSCs). A 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-MeOTAD) being used widely to prepare highly efficient PSCs. However, Spiro-MeOTAD has some limitations due to its complex synthesis, which increases its cost, and it also requires dopants to improve its performance. Therefore, we designed thirteen unique small-molecule-based HTMs (MK1-MK13), which are easy to synthesize, highly cost-effective, and don't require dopants to prepare efficient PSCs. Their electrical and optical properties are then investigated theoretically using advanced quantum chemical approaches. The designed molecules showed lower energy gaps and improved optical and optoelectronic characteristics because of the improved phase inversion geometry. The detailed photo-physical and optoelectronic characteristics have been studied using density functional theory (DFT) and time-dependent (TD-DFT) calculations. Moreover, we investigated the impact of holes and electrons and the density of states, open-circuit voltage, frontier molecular orbital, transition density matrix, and other structural and photovoltaic characteristics of these materials. Among these, the MK3 molecule possesses the much narrower optical band gap of 1.04 eV and absorbance (λ max) of 684 nm, respectively. In addition, a profound investigation of the MK3/PC61BM blend shows excellent charge transfer at the acceptor-donor interface. Therefore, our proposed technique is necessary for generating appropriate photovoltaic materials for efficient optoelectronic devices and is helpful in further advancing the field.

7.
Future Med Chem ; 16(16): 1601-1613, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38940467

ABSTRACT

Aim: The present study describes benzothiazole derived thiazolidinone based thiadiazole derivatives (1-16) as anti-Alzheimer agents.Materials & methods: Synthesis of benzothiazole derived thiazolidinone based thiadiazole derivatives was achieved using the benzothiazole bearing 2-amine moiety. These synthesized compounds were confirmed via spectroscopic techniques (1H NMR, 13C NMR and HREI-MS). These compounds were biologically evaluated for their anti-Alzheimer potential. Binding interactions with proteins and drug likeness of the analogs were explored through molecular docking and ADMET analysis, respectively. In the novel series, compound-3 emerged as the most potent inhibitor when compared with other derivatives of the series.Conclusion: The present study provides potent anti-Alzheimer's agents that can be further optimized to discover novel anti-Alzheimer's drugs.


[Box: see text].


Subject(s)
Alzheimer Disease , Benzothiazoles , Molecular Docking Simulation , Thiadiazoles , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/antagonists & inhibitors , Benzothiazoles/chemical synthesis , Humans , Structure-Activity Relationship , Thiazolidines/chemistry , Thiazolidines/pharmacology , Thiazolidines/chemical synthesis , Molecular Structure , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism
8.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931496

ABSTRACT

This paper proposes a cognitive radio network (CRN)-based hybrid wideband precoding for maximizing spectral efficiency in millimeter-wave relay-assisted multi-user (MU) multiple-input multiple-output (MIMO) systems. The underlying problem is NP-hard and non-convex due to the joint optimization of hybrid processing components and the constant amplitude constraint imposed by the analog beamformer in the radio frequency (RF) domain. Furthermore, the analog beamforming solution common to all sub-carriers adds another layer of design complexity. Two hybrid beamforming architectures, i.e., mixed and fully connected ones, are taken into account to tackle this problem, considering the decode-and-forward (DF) relay node. To reduce the complexity of the original optimization problem, an attempt is made to decompose it into sub-problems. Leveraging this, each sub-problem is addressed by following a decoupled design methodology. The phase-only beamforming solution is derived to maximize the sum of spectral efficiency, while digital baseband processing components are designed to keep interference within a predefined limit. Computer simulations are conducted by changing system parameters under different accuracy levels of channel-state information (CSI), and the obtained results demonstrate the effectiveness of the proposed technique. Additionally, the mixed structure shows better energy efficiency performance compared to its counterparts and outperforms benchmarks.

9.
Sci Rep ; 14(1): 10588, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719919

ABSTRACT

Solitary wave solutions are of great interest to bio-mathematicians and other scientists because they provide a basic description of nonlinear phenomena with many practical applications. They provide a strong foundation for the development of novel biological and medical models and therapies because of their remarkable behavior and persistence. They have the potential to improve our comprehension of intricate biological systems and help us create novel therapeutic approaches, which is something that researchers are actively investigating. In this study, solitary wave solutions of the nonlinear Murray equation will be discovered using a modified extended direct algebraic method. These solutions represent a uniform variation in blood vessel shape and diameter that can be used to stimulate blood flow in patients with cardiovascular disease. These solutions are newly in the literature, and give researchers an important tool for grasping complex biological systems. To see how the solitary wave solutions behave, graphs are displayed using Matlab.


Subject(s)
Nonlinear Dynamics , Humans , Models, Cardiovascular , Blood Vessels/physiology , Blood Flow Velocity , Algorithms
10.
Food Chem X ; 22: 101418, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38736980

ABSTRACT

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

11.
Small ; : e2402268, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733239

ABSTRACT

A high-quality nanostructured tin oxide (SnO2) has garnered massive attention as an electron transport layer (ETL) for efficient perovskite solar cells (PSCs). SnO2 is considered the most effective alternative to titanium oxide (TiO2) as ETL because of its low-temperature processing and promising optical and electrical characteristics. However, some essential modifications are still required to further improve the intrinsic characteristics of SnO2, such as mismatch band alignments, charge extraction, transportation, conductivity, and interfacial recombination losses. Herein, an inorganic-based cesium (Cs) dopant is used to modify the SnO2 ETL and to investigate the impact of Cs-dopant in curing interfacial defects, charge-carrier dynamics, and improving the optoelectronic characteristics of PSCs. The incorporation of Cs contents efficiently improves the perovskite film quality by enhancing the transparency, crystallinity, grain size, and light absorption and reduces the defect states and trap densities, resulting in an improved power conversion efficiency (PCE) of ≈22.1% with Cs:SnO2 ETL, in-contrast to pristine SnO2-based PSCs (20.23%). Moreover, the Cs-modified SnO2-based PSCs exhibit remarkable environmental stability in a relatively higher relative humidity environment (>65%) and without encapsulation. Therefore, this work suggests that Cs-doped SnO2 is a highly favorable electron extraction material for preparing highly efficient and air-stable planar PSCs.

12.
Heliyon ; 10(7): e28766, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576555

ABSTRACT

For thousands of years, plants have been utilized for medicinal purposes. For its naturally existing antibacterial properties, Nigella sativa is one of the most researched herbs. A study was conducted during rabi 2020-21 at The University of Haripur in order to evaluate the potential of ascorbic acid as plant growth enhancer. Two concentrations of ascorbic acid i-e 350 µm and 400 µm were sprayed along with control and water only spray on Nigella sativa crop. The study was arranged in RCBD two factor factorial arrangement. Factor A: ascorbic acid concentrations along with control and water spray, factor B: Growth stages (Stage1 = 40 days after sowing, Stage 2 = 80 DAS, Stage 3 = 120 DAS, Stage 4 = 40 + 80 DAS, Stage 5 = 40 + 120 DAS, Stage 6 = 80 + 120 DAS, Stage 7 = 40 + 80 + 120 DAS). Crop was sown in first week of November. Results reviled that chlorophyll b content, fixed oil content, 1000 seed weight, grain yield, Photosynthetic rate (µ mole m-2s-1), Transpiration rate (mmole m-2s-1), photosynthetic water use efficiency, Internal CO2 concentration (Ci) of leaf tissue and Stomatal conductance (mmole m-2s-1) were significantly affected by ascorbic acid concentrations and stage of application. Crop growth rate increased by 19.88% and 17.29%, chlorophyll b by 12.3% and 11.2%, fixed oil by 11.7% and 9%, grain yield by 10.29% and 9.8%, harvest index by 4% and 5.7% photosynthetic rate by 33%, 20% and stomatal conductance by 24.24% and 24.25 with application of ascorbic acid @ 350 µm, over control and water spray respectively. On the basis of these results it is concluded that application of ascorbic acid at the rate of 350 µm, followed by ascorbic acid at the rate of 400 µm significantly improves black cumin (Nigella sativa) yield and production. Hence it is recommended to apply ascorbic acid at the rate of 350 µm at 40 + 80+120 days after sowing of Nigella sativa crop for obtaining maximum results.

13.
Heliyon ; 10(7): e28352, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571657

ABSTRACT

The use of natural ester oils as electrically insulating fluids has gained significant attention from industries and electrical utilities as they aim to replace traditional mineral oils. However, most natural ester oils are derived from edible products, which has the potential to contribute to the food crisis. Therefore, nonedible green nanofluids made from cottonseed oil (CSO) have been targeted as a keen solution to this issue. However, Al2O3, TiO2, Fe2O3, SiO2, and graphene nanoparticles at (0.025, 0.05, and 0.075 wt/vol%) were used as additives, along with surfactant Olic Ac-id and Ethanol (1:5) due to their promising impact on the dielectric and thermal properties of the nanofluid. The nanofluid synthesis process was practically conducted in HV & Chemical Laboratories using one-step and two-step methods, and their breakdown voltage results and chemical properties (e.g., fire point, flash point, cloud point, pour point, viscosity, acidity, moisture content, resistivity, and dissipation factor) were compared. The physical mechanisms underlying these properties were also analyzed and tested. For the validation of the proposed vegetable oil the results have been compared with traditional mineral oil for high-voltage equipment's. The findings suggest that the proposed nonedible green nanofluids-based cottonseed oil (CSO) has a high potential to be used as electrically insulating fluids, providing a sustainable alternative to conventional mineral oils. Overall, this study provides insights into the use of non-edible green nanofluids as a solution to the potential contribution of natural ester oils to the food crisis. The findings highlight the importance of sustainable solutions in the energy industry and the need for further research in this area.

14.
Theor Appl Genet ; 137(4): 94, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578443

ABSTRACT

KEY MESSAGE: This study revealed the identification of a novel gene, Zm00001d042906, that regulates maize ear length by modulating lignin synthesis and reported a molecular marker for selecting maize lines with elongated ears. Maize ear length has garnered considerable attention due to its high correlation with yield. In this study, six maize inbred lines of significant importance in maize breeding were used as parents. The temperate maize inbred line Ye107, characterized by a short ear, was crossed with five tropical or subtropical inbred lines featuring longer ears, creating a multi-parent population displaying significant variations in ear length. Through genome-wide association studies and mutation analysis, the A/G variation at SNP_183573532 on chromosome 3 was identified as an effective site for discriminating long-ear maize. Furthermore, the associated gene Zm00001d042906 was found to correlate with maize ear length. Zm00001d042906 was functionally annotated as a laccase (Lac4), which showed activity and influenced lignin synthesis in the midsection cells of the cob, thereby regulating maize ear length. This study further reports a novel molecular marker and a new gene that can assist maize breeding programs in selecting varieties with elongated ears.


Subject(s)
Laccase , Zea mays , Zea mays/genetics , Laccase/genetics , Genome-Wide Association Study , Lignin , Plant Breeding
15.
Environ Sci Pollut Res Int ; 31(21): 31395-31413, 2024 May.
Article in English | MEDLINE | ID: mdl-38632193

ABSTRACT

Soil contamination with microplastics (MPs) is a persistent threat to crop production worldwide. With a wide range of MP types, including polystyrene (PS), polyvinyl chloride (PVC) and polyethylene (PE), contaminating our environment, it is important to understand their impact on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC and PE) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and non-enzymatic), gene expression, proline metabolism, the AsA-GSH cycle and cellular fractionation and nutritional status, in different parts of rice (Oryza sativa L.) seedlings, which were also exposed to plant growth promoting rhizobacteria (PGPR), i.e. Bacillus mycoides PM35, i.e. 20 µL. The research outcomes indicated that the different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments and gas exchange attributes. However, MP stress also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the fractionations of cellular components was observed. Although the application of B. mycoides PM35 showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased oxidative stress. In addition, the application of B. mycoides PM35 enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of MP contamination in agricultural soils.


Subject(s)
Microplastics , Oryza , Soil Pollutants , Soil Pollutants/metabolism , Bacillus , Oxidative Stress
16.
BMC Complement Med Ther ; 24(1): 173, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658923

ABSTRACT

BACKGROUND: Diabetes is a leading health disorder and is responsible for high mortality rates across the globe. Multiple treatment protocols are being applied to overcome this morbidity and mortality including plant-based traditional medicines. This study was designed to investigate the ethnomedicinal status of plant species used to treat diabetes in District Karak, Pakistan. MATERIALS AND METHODS: A semi-structured survey was created to collect data about traditionally used medicinal plants for diabetes and other ailments. The convenience sampling method was applied for the selection of informants. The collected data was evaluated through quantitative tools like frequency of citation (FC), relative frequency of citation (RFC), informant consensus factor (FIC), fidelity level (FL), and use value (UV). RESULTS: A total of 346 local informants were selected for this research. Out of them, 135 participants were men and 211 participants were women. Overall 38 plant species belonging to 29 plant families were used to treat diabetes. The most dominant plant family was Oleaceae having 11 species. Powder form (19%) was the most recommended mode of preparation for plant-based ethnomedicines. Leaves (68%) were the most frequently used parts followed by fruit (47%). The highest RFC was recorded for Apteranthes tuberculata (0.147). The maximum FL was reported for Apteranthes tuberculata (94.4) and Zygophyllum indicum (94.11) for diabetes, skin, and wounds. Similarly, the highest UV of (1) each was found for Brassica rapa, Melia azedarach, and Calotropis procera. Based on documented data, the reported ailments were grouped into 7 categories. The ICF values range between 0.89 (diabetes) to 0.33 (Cardiovascular disorders). CONCLUSION: The study includes a variety of antidiabetic medicinal plants, which are used by the locals in various herbal preparations. The species Apteranthes tuberculata has been reported to be the most frequently used medicinal plant against diabetes. Therefore, it is recommended that such plants be further investigated in-vitro and in-vivo to determine their anti-diabetic effects.


Subject(s)
Diabetes Mellitus , Ethnobotany , Hypoglycemic Agents , Phytotherapy , Plants, Medicinal , Humans , Pakistan , Plants, Medicinal/chemistry , Female , Male , Adult , Middle Aged , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus/drug therapy , Medicine, Traditional , Aged , Young Adult , Surveys and Questionnaires
17.
Ecotoxicol Environ Saf ; 274: 116189, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38461579

ABSTRACT

Throughout the literature, the word "heavy metal" (HM) has been utilized to describe soil contamination; in this context, we characterize it as those elements with a density greater than 5 g per cubic centimeter. Contamination is one of the major global health concerns, especially in China. China's rapid urbanization over the past decades has caused widespread urban water, air, and soil degradation. This study provides a complete assessment of the soil contamination caused by heavy metals in China's mining and smelting regions. The study of heavy metals (HMs) includes an examination of their potential adverse impacts, their origins, and strategies for the remediation of soil contaminated by heavy metals. The presence of heavy metals in soil can be linked to both natural and anthropogenic processes. Studies have demonstrated that soils contaminated with heavy metals present potential health risks to individuals. Children are more vulnerable to the effects of heavy metal pollution than adults. The results highlight the significance of heavy metal pollution caused by mining and smelting operations in China. Soil contaminated with heavy metals poses significant health concerns, both carcinogenic and non-carcinogenic, particularly to children and individuals living in heavily polluted mining and smelting areas. Implementing physical, chemical, and biological remediation techniques is the most productive approach for addressing heavy metal-contaminated soil. Among these methods, phytoremediation has emerged as a particularly advantageous option due to its cost-effectiveness and environmentally favorable characteristics. Monitoring heavy metals in soils is of utmost importance to facilitate the implementation of improved management and remediation techniques for contaminated soils.


Subject(s)
Groundwater , Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Soil/chemistry , Environmental Monitoring/methods , Soil Pollutants/analysis , Metals, Heavy/analysis , China , Biodegradation, Environmental , Risk Assessment
19.
Int J Biol Macromol ; 265(Pt 1): 130740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462117

ABSTRACT

Enhancing enzyme activity and stability in biomass degradation can improve substrate saccharification and, increases biorefinery efficiency. For the first time, we identified 20 lytic polysaccharide monooxygenases (LPMOs) AA9 genes in the genome of Thermothelomyces fergusii. Our results showed that TfAA9 was categorized into LPMOs1, LPMOs2, and LPMOs3 subgroups based on protein diversity. Protein- 3D structure analysis showed strong interactions between Myceliophthora thermophila AA9 proteins and 17 TfAA9 proteins. Gene ontology analysis indicated a high enrichment of cellulase activity in TfAA9 genes. KEGG pathways analysis revealed the role of TfAA9 proteins in the endohydrolysis of 1,4-beta-D-glucosidic linkages in cellulose. Numerous TfAA9s gene transcripts were up-regulated on avicel, cellobiose, and glucose, with a higher proportion on avicel. Protein concentration, endoglucanase, and cellulase activity were also boosted on avicel. However, limited fungal biomass was observed on avicel, despite the abundance of AA9 LPMOs in the T. fergusii genome. These findings expand our understanding of fungal AA9 genes and their role in lignocellulolytic degradation. The disparity between biomass and enzymatic activity suggests screening TfAA9 genes for highly active enzymes and redundant genes via heterologous expression. In short, functional characterization of these genes could contribute to improving the saccharification process of industrial raw materials.


Subject(s)
Cellulases , Mixed Function Oxygenases , Mixed Function Oxygenases/chemistry , Polysaccharides/metabolism , Cellulose/chemistry , Fungi , Genomics
20.
BMC Pregnancy Childbirth ; 24(1): 108, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310244

ABSTRACT

BACKGROUND: A variety of screening tools and criteria are used for the diagnosis of gestational diabetes mellitus (GDM). As a result, the prevalence rate of GDM varied from 4.41% to 57.90% among studies from Pakistan. Beside this disagreement, similar multi-centric studies, community surveys and pooled evidence were lacking from the country. Therefore, this first systematic review and meta-analysis aimed to measure the overall and subgroup pooled estimates of GDM and explore the methodological variations among studies for any inconsistency. METHODS: Using the PRISMA guidelines, seventy studies were identified from PubMed, ScienceDirect, Google Scholar and PakMediNet database. Of them, twenty-four relevant studies were considered for systematic review and nine eligible studies selected for meta-analysis. AXIS was used for measuring quality of reporting, I^2 statistics for heterogeneity among studies and subgroups, funnel plot for reporting potential publication bias and forest plot for presenting pooled estimates. RESULTS: The pooled sample of nine studies was 27,034 (126 - 12,450) pregnant women, of any gestational age, from all four provinces of Pakistan. Overall pooled estimate of GDM was 16.7% (95% CI 13.1 - 21.1). The highest subgroup pooled estimate of GDM observed in studies from Balochistan (35.8%), followed by Islamabad (23.9%), Khyber Pakhtunkhwa (17.2%), Sindh (13.2%), and Punjab (11.4%). The studies that adopted 75g 2-h OGTT had a little lower pooled estimate (16.3% vs. 17.3%); and that adopted diagnostic cut-off values [≥ 92 (F), ≥ 180 (1-h) and ≥ 153 (2-h)] had a greater pooled estimate (25.4% vs. 15.8%). The studies that adopted Carpenter criteria demonstrated the highest subgroup pooled estimate of GDM (26.3%), after that IADPSG criteria (25.4%), and ADA criteria (23.9%). CONCLUSIONS: Along with poor quality of reporting, publishing in non-indexed journals and significant disagreement between studies, the prevalence rate of GDM is high in Pakistan. Consensus building among stakeholders for recommended screening methods; and continuous medical education of the physicians are much needed for a timely detection and treatment of GDM.


Subject(s)
Diabetes, Gestational , Female , Humans , Pregnancy , Diabetes, Gestational/diagnosis , Diabetes, Gestational/epidemiology , Glucose Tolerance Test , Pakistan/epidemiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL