Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365585

ABSTRACT

Nanocellulose is a versatile cellulosic nanomaterial that can be used in many application areas. Applying different preparation strategies leads to different types of nanocellulose. In this study, nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC) were prepared from lesser known wood species, viz., Macaranga gigantea, using sulfuric acid hydrolysis and enzymatic pretreatment with ultrafine grinding approaches, respectively. The respective nanocellulose was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), atomic force microscopy (AFM). It was then converted into a thin film to assess its performance which includes tensile test, transparency, air permeance, water vapor transmission rate (WVTR), and water vapor permeability (WVP) properties. NCC and NFC produced from the raw material of Macaranga had average widths of 6.38 ± 3.92 nm and 13.17 ± 12.71 nm, respectively. Peaks in FTIR spectra showed the conversion of Macaranga wood to nanocellulose by the presence of cellulose fingerprint as well as absence of lignin and hemicellulose after alkaline treatment. The successful conversion was also supported by XRD analysis which displayed the increased crystallinity value from 54% to 70%. TGA decomposition pattern at 200-490 °C revealed the thermal stability of the samples. The thin film produced from nanocelluloses had WVTR values of 4.58 and 12.14 g/(day·m2) for NFC and NCC, respectively, comparable to those of films from polyester and oriented polypropylene. Nanocellulose-based thin film has the potential to be used as sustainable and biodegradable packaging.

2.
Nanoscale Res Lett ; 15(1): 207, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33146807

ABSTRACT

Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.

3.
Carbohydr Polym ; 161: 166-171, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28189225

ABSTRACT

Acacia mangium, a fast growing tree is widely planted in Malaysia. Converting Acacia wood into nanocellulose could create new value added products for forest-based industry. Nanocrystalline cellulose (NCC) was prepared from Acacia mangium wood pulp via 64wt% sulfuric acid hydrolysis. Prior to acid hydrolysis, Acacia mangium was subjected to pulping followed by bleaching in order to remove non-cellulosic fragments. Acid hydrolysis was carried out on bleached pulp to produce the needle-like NCC with 79% crystallinity and aspect ratio of 26. The resulting NCC was mixed with PVA as a reinforcement material. Incorporation of 2% NCC improved the tensile of the NCC-PVA film by 30%.


Subject(s)
Acacia/chemistry , Cellulose/chemical synthesis , Nanoparticles/chemistry , Cellulose/chemistry , Hydrolysis , Tensile Strength , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...