Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(10): 13775-13783, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32986407

ABSTRACT

Most materials used for optical lighting applications need to produce a uniform illumination and require high mechanical and hydrophobic properties. However, they are rarely eco-friendly. Herein, a bio-based, polymer matrix-free, luminescent, and hydrophobic film with excellent mechanical properties for optical lighting purposes is demonstrated. A template is prepared by turning a wood veneer into porous scaffold from which most of the lignin and half of the hemicelluloses are removed. The infiltration of quantum dots (CdSe/ZnS) into the porous template prior to densification resulted in almost uniform luminescence (isotropic light scattering) and could be extended to various quantum dot particles, generating different light colors. In a subsequent step, the luminescent wood film is coated with hexadecyltrimethoxysilane (HDTMS) via chemical vapor deposition. The presence of the quantum dots coupled with the HDTMS coating renders the film hydrophobic (water contact angle ≈ 140°). This top-down process strongly eliminates lumen cavities and preserves the orientation of the original cellulose fibrils to create luminescent and polymer matrix-free films with high modulus and strength in the direction of fibers. The proposed optical lighting material could be attractive for interior designs (e.g., lamps and laminated cover panels), photonics, and laser devices.

2.
ACS Nano ; 14(6): 7358-7369, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32426962

ABSTRACT

Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 µs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.


Subject(s)
Nanoparticles , Thermometry , Electric Conductivity , Ions , Lasers
3.
J Struct Biol ; 211(2): 107532, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32442716

ABSTRACT

Deep understanding of the physicochemical and structural characteristics of wood at the nanoscale is essential for improving wood usage in biorefining and advancing new high performance materials design. Herein, we use in situ atomic force microscopy and a simple delignification treatment to elucidate the nanoscale architecture of individual secondary cell wall layers. Advantages of this approach are: (i) minimal sample preparation that reduces the introduction of potential artifacts; (ii) prevention of structural rearrangements due to dehydration; (iii) increased accessibility to structural details masked by the lignin matrix; and (iv) possibility to complement results with other analytical techniques without sample manipulation. The methodology permits the visualization of parallel and helicoidally arranged microfibril aggregates in the S1 layer and the determination of lignin contribution to microfibril aggregates forming S2 layers. Cellulose and hemicelluloses constitute the core of the aggregates with a mean diameter of approximately 19 nm, and lignin encloses the core forming single structural entities of about 30 nm diameter. Furthermore, we highlight the implications of sample preparation and imaging parameters on the characterization of microfibril aggregates by AFM.


Subject(s)
Cell Wall/ultrastructure , Lignin/ultrastructure , Wood/ultrastructure , Cell Wall/chemistry , Cellulose/chemistry , Cellulose/ultrastructure , Lignin/chemistry , Microscopy, Atomic Force , Polysaccharides/chemistry , Polysaccharides/ultrastructure , Wood/chemistry
4.
Adv Sci (Weinh) ; 7(7): 1902897, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274302

ABSTRACT

The applicability of advanced composite materials with hierarchical structure that conjugate metal-organic frameworks (MOFs) with macroporous materials is commonly limited by their inferior mechanical properties. Here, a universal green synthesis method for the in situ growth of MOF nanocrystals within wood substrates is introduced. Nucleation sites for different types of MOFs are readily created by a sodium hydroxide treatment, which is demonstrated to be broadly applicable to different wood species. The resulting MOF/wood composite exhibits hierarchical porosity with 130 times larger specific surface area compared to native wood. Assessment of the CO2 adsorption capacity demonstrates the efficient utilization of the MOF loading along with similar adsorption ability to that of pure MOF. Compression and tensile tests reveal superior mechanical properties, which surpass those obtained for polymer substrates. The functionalization strategy offers a stable, sustainable, and scalable platform for the fabrication of multifunctional MOF/wood-derived composites with potential applications in environmental- and energy-related fields.

5.
Adv Sci (Weinh) ; 6(10): 1802190, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31131194

ABSTRACT

Elegant design principles in biological materials such as stiffness gradients or sophisticated interfaces provide ingenious solutions for an efficient improvement of their mechanical properties. When materials such as wood are directly used in high-performance applications, it is not possible to entirely profit from these optimizations because stiffness alterations and fiber alignment of the natural material are not designed for the desired application. In this work, wood is turned into a versatile engineering material by incorporating mechanical gradients and by locally adapting the fiber alignment, using a shaping mechanism enabled by reversible interlocks between wood cells. Delignification of the renewable resource wood, a subsequent topographic stacking of the cellulosic scaffolds, and a final densification allow fabrication of desired 3D shapes with tunable fiber architecture. Additionally, prior functionalization of the cellulose scaffolds allows for obtaining tunable functionality combined with mechanical gradients. Locally controllable elastic moduli between 5 and 35 GPa are obtained, inspired by the ability of trees to tailor their macro- and micro-structure. The versatility of this approach has significant relevance in the emerging field of high-performance materials from renewable resources.

6.
Phys Chem Chem Phys ; 19(27): 17827-17833, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28657628

ABSTRACT

Although the dissolution kinetics of calcite in acid waters has been studied for more than a century, the process is not fully understood, and for particles and microcrystals the process is often assumed to be diffusion-controlled. Herein, the dissolution kinetics of calcite single microcrystals in aqueous solution (pH ca. 3) has been investigated for the first time by a combination of real-time optical microscopy coupled with numerical simulations. The small size and well-defined geometry of rhombohedral calcite single crystals enables the measurement of the dissolution rates of the individual crystal faces exposed to the solvent and an assessment of the relative importance of corners and edges compared to the {104} faces. Data are used to parameterise finite element method (FEM) models for the quantitative analysis of dissolution kinetics. The simulations provide an accurate determination of the near-interface concentration of solution species during dissolution, as well as concentration gradients. The intrinsic first-order dissolution rate constant for the attack of protons on the exposed {104} faces, ksurf = (6.4 ± 2.8) × 10-4 m s-1, is in good agreement with previous microscopic and macroscopic measurements, corroborating the method. This study is a further demonstration of the power of simple in situ optical microscopy for quantitative interfacial (dissolution/growth) kinetic measurements, using a configuration of practical relevance for processes as diverse as the remediation of acid water and scale removal.

7.
Bioconjug Chem ; 28(4): 1123-1134, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28263563

ABSTRACT

Bioconjugation of RNA is a dynamic field recently reinvigorated by a surge in research on post-transcriptional modification. This work focuses on the bioconjugation of 4-thiouridine, a nucleoside that occurs as a post-transcriptional modification in bacterial RNA and is used as a metabolic label and for cross-linking purposes in eukaryotic RNA. A newly designed coumarin compound named 4-bromomethyl-7-propargyloxycoumarin (PBC) is introduced, which exhibits remarkable selectivity for 4-thiouridine. Bearing a terminal alkyne group, it is conductive to secondary bioconjugation via "click chemistry", thereby offering a wide range of preparative and analytical options. We applied PBC to quantitatively monitor the metabolic incorporation of s4U as a label into RNA and for site-specific introduction of a fluorophore into bacterial tRNA at position 8, allowing the determination of its binding constant to an RNA-modification enzyme.


Subject(s)
Coumarins/chemistry , RNA, Bacterial/metabolism , Staining and Labeling/methods , Affinity Labels/chemical synthesis , Alkynes/chemistry , Binding Sites , Click Chemistry , Protein Binding , RNA Processing, Post-Transcriptional , Thiouridine/chemistry
8.
ACS Nano ; 10(9): 8871-8, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27569272

ABSTRACT

Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...