Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675899

ABSTRACT

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Subject(s)
Genome, Viral , Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , Whole Genome Sequencing , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Lumpy skin disease virus/isolation & purification , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Cattle , Africa, Central/epidemiology , Africa, Western/epidemiology , Disease Outbreaks
2.
Front Immunol ; 15: 1305586, 2024.
Article in English | MEDLINE | ID: mdl-38322252

ABSTRACT

Introduction: One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic. Methods: We used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. Result: Our study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. Discussion: These findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone.


Subject(s)
COVID-19 , West African People , Humans , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , COVID-19/immunology , Enzyme-Linked Immunospot Assay , Immunoglobulin G , Nigeria , Pandemics , SARS-CoV-2
3.
Vet Anim Sci ; 23: 100339, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38406258

ABSTRACT

Marek's disease (MD) and chicken infectious anaemia (CIA) are viral immunosuppressive diseases of poultry caused by the MD virus (MDV) and CIA virus (CIAV) respectively. Despite vaccination against MD, the incidence of the disease in vaccinated poultry flocks in Nigeria persists. However, underlying factors like co-infection with CIAV have not been investigated in the country. This study was designed to investigate possible co-infections of MDV and CIAV in poultry flocks in Nigeria. In 2016, tumorous tissue samples were collected from suspected cases of MD at necropsy in Jos, Plateau State, Nigeria. The samples collected were fixed in formalin for histopathological examination, genomic DNA was extracted from a second part and analysed by polymerase chain reaction (PCR), targeting the meq and VP1 genes of the MDV and CIAV, respectively. The histology results revealed that the cutaneous and proventricular lymphomas were characterized by large numbers of mononuclear cellular infiltrates admixed with heterophils. The PCR results revealed that MDV was detected in 66.7% (16/24), CIAV in 45.8% (11/24), and co-infections of MDV and CIAV were detected in 45.8% (11/24) of the samples analysed. In addition, co-infections of MD and CIA were recorded in 100% (6/6) and 27.7% (5/18) of broilers and layer/pullet' samples respectively. Phylogenetic analysis of the meq gene sequences revealed that the Nigerian MDV clusters with very virulent MDV from Egypt and Italy. While, CIAV sequences were genotype II and genotype III and clustered with CIAVs from Cameroon and China. This is the first report of co-infections of MD and CIA in Nigeria.

4.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37243137

ABSTRACT

Lumpy Skin disease (LSD) is an economically important disease in cattle caused by the LSD virus (LSDV) of the genus Capripoxvirus, while pseudocowpox (PCP) is a widely distributed zoonotic cattle disease caused by the PCP virus (PCPV) of the genus Parapoxvirus. Though both viral pox infections are reportedly present in Nigeria, similarities in their clinical presentation and limited access to laboratories often lead to misdiagnosis in the field. This study investigated suspected LSD outbreaks in organized and transhumance cattle herds in Nigeria in 2020. A total of 42 scab/skin biopsy samples were collected from 16 outbreaks of suspected LSD in five northern States of Nigeria. The samples were analyzed using a high-resolution multiplex melting (HRM) assay to differentiate poxviruses belonging to Orthopoxvirus, Capripoxvirus, and Parapoxvirus genera. LSDV was characterized using four gene segments, namely the RNA polymerase 30 kDa subunit (RPO30), G-protein-coupled receptor (GPCR), the extracellular enveloped virus (EEV) glycoprotein and CaPV homolog of the variola virus B22R. Likewise, the partial B2L gene of PCPV was also analyzed. Nineteen samples (45.2%) were positive according to the HRM assay for LSDV, and five (11.9%) were co-infected with LSDV and PCPV. The multiple sequence alignments of the GPCR, EEV, and B22R showed 100% similarity among the Nigerian LSDV samples, unlike the RPO30 phylogeny, which showed two clusters. Some of the Nigerian LSDVs clustered within LSDV SG II were with commonly circulating LSDV field isolates in Africa, the Middle East, and Europe, while the remaining Nigerian LSDVs produced a unique sub-group. The B2L sequences of Nigerian PCPVs were 100% identical and clustered within the PCPV group containing cattle/Reindeer isolates, close to PCPVs from Zambia and Botswana. The results show the diversity of Nigerian LSDV strains. This paper also reports the first documented co-infection of LSDV and PCPV in Nigeria.


Subject(s)
Capripoxvirus , Cattle Diseases , Lumpy skin disease virus , Poxviridae Infections , Animals , Cattle , Nigeria/epidemiology , Farms , Lumpy skin disease virus/genetics , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Poxviridae Infections/diagnosis , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Zoonoses , Phylogeny
5.
Open Vet J ; 12(4): 551-561, 2022.
Article in English | MEDLINE | ID: mdl-36118719

ABSTRACT

Background: Outbreaks of contagious ecthyma (CE) are frequently reported in sheep and goat flocks in Nigeria with severe clinical outcomes. CE is a debilitating and economically important disease primarily affecting sheep and goats caused by the Orf virus (ORFV). Despite field reports of CE in the country, there is no concise country-wide epidemiological data on the disease and limited genetic data of circulating Nigerian ORFV are available in the public domain. Aim: An epidemiological survey of CE and molecular characterization of ORFV circulating in Nigeria from 2014 to 2016. Method: Data were collected using designed questionnaires, administered to veterinarians and farmers in selected States of Nigeria. Samples were collected during passive surveillance for CE from 2014 to 2016 which were analyzed by polymerase chain reaction (PCR). The A32L and B2L genes of circulating ORFV were also characterized. Results: Analysis of the questionnaire showed that 69.54% (n = 82/118) of the farmers claimed to have experienced CE in their flocks with average morbidity and mortality rates of 25% and 15%, respectively. A total of 113 veterinarians participated in the study, with 69.9% (n = 79) familiar with CE and claimed CE causes morbidity rates of 25%-37% and mortality rates of 10%-15% in sheep and goats. Laboratory results revealed that ORFV was detected in 72% (18/25) of outbreak samples analyzed by real-time PCR. Phylogenetic analysis of A32L and B2L genes revealed that Nigerian ORFV sequences belong to clusters I and II and are similar to viruses from India, Ethiopia, and China. Conclusions: This study is the first nationwide epidemiological data on the status of CE in sheep and goats in Nigeria. It is also the first report of molecular characterization of two genes of ORFV circulating and causing outbreaks in small ruminants in the country. This study showed that CE is under-reported, widespread and of economic importance to sheep and goat farmers in Nigeria.


Subject(s)
Ecthyma, Contagious , Goat Diseases , Orf virus , Sheep Diseases , Animals , Ecthyma, Contagious/epidemiology , Goat Diseases/epidemiology , Goats , Nigeria/epidemiology , Orf virus/genetics , Phylogeny , Sheep , Sheep Diseases/epidemiology , Surveys and Questionnaires
6.
Prev Vet Med ; 198: 105503, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34808578

ABSTRACT

Sheeppox and goatpox (SGP) are important transboundary diseases, endemic in Nigeria, causing severe clinical manifestations, impacting production, and resulting in economic losses. Vaccination is an effective control measure against SGP in endemic countries but is not currently implemented in Nigeria. This study aimed to estimate SGP financial impact and assess economic viability of SGP vaccination at the herd and regional level under different scenarios in Northern Nigeria. Integrated stochastic production and economic herd models were developed for transhumance and sedentary herds. Models were run for two disease scenarios (severely and slightly affected) and with and without vaccination, with data parameterisation from literature estimates, field survey and authors' experience. Herd-level net financial impact of the disease and its vaccination was assessed using gross margin (GM) and partial budget analyses. These were then used to assess regional financial impact of disease and profitability of a 3-year vaccination programme using a cost-benefit analysis. The regional-analysis was performed under 0 %, 50 % and 100 % government subsidy scenarios; as a standalone programme or in combination with other existing vaccination programmes; and for risk-based and non-risk-based intervention. Median SGP losses per reproductive female were £27 (90 % CI: £31-£22), and £5 (90 % CI: £7-£3), in sedentary, and £30 (90 % CI: £41-21), and £7 (90 % CI: £10-£3), in transhumance herds, for severely and slightly affected scenarios respectively. Selling animals at a reduced price, selling fewer young animals, and reduced value of affected animals remaining in the herd were the greatest contributors to farmer's SGP costs. SGP-affected herds realised a GM reduction of up to 121 % in sedentary and 138 % in transhumance. Median estimated regional SGP cost exceeded £24 million. Herd-level median benefits of vaccination per reproductive female were £23.76 (90 % CI: £19.28-£28.61), and £4.01 (90 % CI: £2.36-£6.31), in sedentary, and £26.85 (90 % CI: £17.99-£37.02) and £7.45 (90 % CI: £3.47-£15.14) in transhumance herds, in severely and slightly affected scenarios, respectively. Median benefit: cost ratio (BCR) for severely affected herds at 50% subsidies was 6.62 (90% CI: 5.30-8.90) for sedentary, and 5.14 (90% CI: 3.31-13.81) for transhumance herds. The regional SGP vaccination standalone programme BCR: 7-27, regional SGP vaccination with existing vaccination programme BCR: 7-228 and vaccinating high-risk areas BCR: 19-439 were found to be economically viable for all subsidy levels explored. Vaccinating low-risk areas only realised benefits with 100 % of government subsidies. This study further increases understanding of SGP's impact within Northern Nigeria and demonstrates vaccination is an economically viable control strategy at the herd-level and also regionally, depending on the strategy and government subsidy levels considered.


Subject(s)
Farmers , Poxviridae Infections , Vaccination , Animals , Cost-Benefit Analysis , Female , Goats , Humans , Nigeria , Poxviridae Infections/prevention & control , Poxviridae Infections/veterinary , Sheep , Vaccination/veterinary
7.
Prev Vet Med ; 196: 105473, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34479042

ABSTRACT

Sheeppox and goatpox (SGP) are transboundary, highly contagious diseases affecting sheep and goats with characteristic clinical signs. SGP affect populations of small ruminants in Africa, Asia and the Middle East and, as a result, threaten farmers' livelihoods. Despite their importance, studies looking at factors that increase the risk of sheeppox-virus (SPPV) and goatpox-virus (GTPV) exposure and infection are limited. A cross-sectional study was conducted in three states of Northern Nigeria (Bauchi, Kaduna and Plateau) to determine the sero-prevalence and spatial patterns of SGP, and identify risk factors for SPPV/GTPV exposure at animal and household level. Sera samples were collected from 1,800 small ruminants from 300 households. Data on putative risk factors were collected using a standardised questionnaire. Twenty-nine small ruminants were sero-positive to SGP - apparent weighted sero-prevalence 2.0 %; 95 % C.I. 1.1-.3.0 %. Sero-positive animals came from 19 (6.3 %) households. Analysis of the questionnaire showed that a fifth (20.3 %) of farmers claimed to have experienced SGP outbreaks previously in their flocks, with 33 (1.8 %) of the individual animals sampled in this study reported to have had clinical signs. At animal level, the odds of being sero-positive were higher in older animals (>24months; OR = 8.0, p = 0.008 vs ≤24 months) and small ruminants with a history of clinical SGP (OR = 16.9, p = 0.01). Bringing new small ruminants into the household and having a history of SGP in the flock were the main factors identified at household level. Households were less likely to be sero-positive if the time between bringing animals into the household and sampling was over a year (PR = 0.31, p = 0.05), while households with a history of SGP were more likely to be sero-positive regardless of the timeframe. Important spatial heterogeneity was found. The Bayes smooth rate ranged from 0.06 to 4.10 % across local government areas (LGA), with LGA in the north-east or north-west of the study area identified as hot-spots for SGP exposure. Results from this study shed new light on the understanding of SGP epidemiology and provide key inputs to design risk-based surveillance and intervention programmes in the area.


Subject(s)
Goat Diseases , Poxviridae Infections/epidemiology , Sheep Diseases , Animals , Bayes Theorem , Capripoxvirus , Cross-Sectional Studies , Goat Diseases/epidemiology , Goat Diseases/virology , Goats , Nigeria/epidemiology , Prevalence , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/virology
8.
Pathogens ; 11(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35055963

ABSTRACT

Lumpy skin disease virus (LSDV), together with sheeppox virus and goatpox virus, belong to the genus Capripoxvirus within the family Poxviridae. Collectively, they are considered the most serious poxvirus diseases of agricultural livestock. Due to their severe clinical course and consequent loss of production, as well as high mortality of naïve small and large ruminant populations, they are known to have a significant impact on the economy and global trade restrictions of affected countries. Therefore, all capripox diseases are classified as notifiable under the guidelines of the World Organization of Animal Health (OIE). Since the 1970s, several outbreaks of LSD have been recorded in Nigeria. Until now, only a little information on the virus strains leading to the reported outbreaks have been published, dealing mainly with the phylogenetic relationship of those strains and the description of field outbreaks. During the present study, we experimentally infected cattle with a low-passage Nigerian LSDV strain isolated from a skin sample of LSD positive cattle in Nigeria in 2018. Clinical, molecular and serological data indicate that this LSDV isolate is highly pathogenic in cattle since it induced a severe clinical course and approximately 33% mortality in naïve Holstein Friesian cattle after experimental infection.

9.
Transbound Emerg Dis ; 66(4): 1631-1641, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30959552

ABSTRACT

Capripox virus infections are endemic diseases of livestock in Nigeria, but there are limited data on molecular characterization of circulating viruses. In this study, we investigated field outbreaks of Capripox virus infections in Nigeria via partial sequencing of viruses obtained from field samples. Eleven selected samples, collected from 2000-2016 from cattle (9), sheep (1) and goat (1) in three states in Nigeria and Capripox virus genome positive by PCR and real-time qPCR, were characterized using our newly developed partial sequencing protocol. This method for genetic characterization of Capripox virus strains allows a first, short molecular classification of strains responsible for the investigated field outbreaks in the country. Phylogenetically, the eight LSDV samples obtained from 2010 to 2016 are closely related to already published strains occurring in Greece and Serbia in the years 2015 and 2016, respectively, whereas the isolate from 2000 shows high similarity to the South African NI-2490 strain. These data indicate that there was a change of LSDV strains circulating in Nigeria between the years 2000 and 2010. The samples isolated from a goat and a sheep in different years seem to be related to already known GTPV strains, but clearly differ from all current published GTPV strains. Interestingly, both newly detected GTPV strains show up to 100% similarity compared to each other and led to clinical disease in sheep and goats. It is long known that some strains of GTPV and SPPV are able to infect both sheep and goats, but in most cases lead to more severe disease in only one of these species. Further genetic characterization of these isolates could provide more insight into pathogenesis and virulence factors of Capripox viruses, especially GTPV and SPPV.


Subject(s)
Capripoxvirus/isolation & purification , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Goat Diseases/epidemiology , Poxviridae Infections/veterinary , Sheep Diseases/epidemiology , Animals , Capripoxvirus/genetics , Cattle , Cattle Diseases/virology , Goat Diseases/virology , Goats , Nigeria/epidemiology , Phylogeny , Polymerase Chain Reaction/veterinary , Poxviridae Infections/epidemiology , Poxviridae Infections/virology , Sheep , Sheep Diseases/virology , Skin/virology
10.
Vet Med Sci ; 5(3): 412-418, 2019 08.
Article in English | MEDLINE | ID: mdl-30993915

ABSTRACT

Peste-des-petits-ruminants (PPR) and Goat pox (GTP) are two devastating and economically important transboundary animal diseases of small ruminants in Africa and Asia that have been difficult to control. This study however, investigated an outbreak of PPR and GTP in a mixed flock of indigenous sheep and goats in Kanam, North Central Nigeria. A total of nine sera and seven tissues (lungs, spleen, scab and skin) samples were collected and analysed in the laboratory using competitive enzyme linked immunosorbent assay (cELISA) for PPR antibodies and polymerase chain reaction (PCR) for detection of PPR virus (PPRV) and GTP virus (GTPV). Gene fragments of the nucleoprotein of PPRV and the G-protein-coupled chemokine receptor (GPCR) of GTPV were amplified and sequenced to confirm the presence of the causative viruses. Serologically, antibodies to PPRV were detected in all (9/9) sera collected. GTPV and PPRV was detected in corresponding samples (42.8% n = 3/7) of the scab/skin samples collected by both PCR and RT-PCR technique. The phylogenetic analysis of PPRV revealed that the virus belongs to lineage IV and clustered with viruses from Gabon and Cameroon. Similarly, the GTPV also clustered with other sequences from Burkina Faso and Yemen. The positive cELISA, RT-PCR and PCR results from samples collected from the same animals confirmed co-infection of PPR and GTP in this mixed flock of sheep and goats. This is the first report of concurrent infection of PPR and GTP in mixed flock of sheep and goats in Nigeria. Our findings underscore the need for farmers to vaccinate their flock to control spread and economic losses as result of these diseases.


Subject(s)
Coinfection/veterinary , Disease Outbreaks/veterinary , Goat Diseases/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Poxviridae Infections/epidemiology , Sheep Diseases/epidemiology , Animals , Capripoxvirus/isolation & purification , Coinfection/epidemiology , Coinfection/virology , Goat Diseases/virology , Goats , Nigeria/epidemiology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/isolation & purification , Phylogeny , Poxviridae Infections/virology , Sheep , Sheep Diseases/virology
11.
Biologicals ; 57: 29-33, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30454953

ABSTRACT

Globally, vaccines are used to prevent and control the menace of infectious diseases in livestock with some reported to be inadvertently contaminated with extraneous agents (EAs). With the aim of screening and characterizing for some selected EAs, 44 live viral poultry vaccines were randomly selected based on availability. The vaccines comprised 14 manufacturers in 10 different countries including Nigeria were screened by Polymerase Chain Reaction. In 9% (4/44) of the vaccines, contamination with only avian leukosis virus (ALV) subgroup J (ALV-J) was recorded. Other exogenous ALV subgroups, chicken infectious anemia and infectious laryngotracheitis viruses were absent. The EAs was found in infectious bursal disease (n = 1), Fowlpox (n = 2) and Mareks disease (n = 1) vaccines. Phylogenetic analysis of the ALV-J env gene showed clustering with contemporary group I and II. The result underscores the importance of screening vaccines to avoid the introduction and spread of EAs that could pose a threat to poultry production.


Subject(s)
Avian Leukosis Virus/immunology , Avian Leukosis/immunology , Drug Contamination , Poultry Diseases/immunology , Viral Vaccines/immunology , Animals , Avian Leukosis/virology , Avian Leukosis Virus/classification , Avian Leukosis Virus/genetics , Gene Products, env/classification , Gene Products, env/genetics , Gene Products, env/immunology , Nigeria , Phylogeny , Polymerase Chain Reaction/methods , Poultry , Poultry Diseases/virology , Vaccines, Attenuated/immunology
12.
Afr J Infect Dis ; 11(2): 90-94, 2017.
Article in English | MEDLINE | ID: mdl-28670645

ABSTRACT

BACKGROUND: Sixty (60) male West African Dwarf goats were reported with clinical signs of enlarged lymph nodes, scabs on the mouth, nose and ears. Two of the goats died and post mortem examination reveals enlarged submandibular lymph nodes and vesicular lesions on the tongue. Clinical diagnosis of Orf has been reported in Nigeria but this report is the confirmatory diagnosis of Orf in a suspected outbreak in an experimental farm in Uyo, Akwa Ibom State, Nigeria using molecular techniques. MATERIALS AND METHODS: Scabs, spleen and lymph node samples from goats suspected to have died from Orf were collected, transported on ice to the laboratory and homogenized. The DNA was extracted using QIAmp DNA minikit (Qiagen) according to the manufacturer's instructions. Orf virus (ORFV) was amplified using published ORFVspecific primers by PCR. RESULTS: Morbidity and mortality were 100% and 3.3% respectively, while ORFV was detected by PCR. Diagnosis of Orf was confirmed based on clinical signs of enlarged lymph nodes, scabs on the mouth, nose and ears, necropsy findings of enlarged submandibular lymph nodes and vesicular lesions on the tongue and PCR results. CONCLUSION: This may be the first report of molecular diagnosis of Orf in Nigeria. The 100% morbidity and 3.3% mortality rate is higher than previously reported thus Orf is becoming of greater economic importance than previously thought. It is therefore recommended that routine laboratory diagnosis of Orf be carried nationwide to determine the prevalence of Orf in Nigeria.

SELECTION OF CITATIONS
SEARCH DETAIL
...