Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-520799

ABSTRACT

Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-517707

ABSTRACT

SARS-CoV-2 infection has caused a major global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood including the kinetics of formation of plus stranded genomic and subgenomic RNAs (gRNA and sgRNA) starting from the RNA from the first virus that enters the cell. We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA in infected cells and carried out a time course analysis to determine the kinetics of their replication. We visualized the single molecules of gRNA within the cytoplasm of infected cells 30 minutes post-infection and detected the co-expression of gRNA and sgRNA within two hours post-infection. Furthermore, we observed the formation of a replication organelle (RO) from a single RNA, which led to the formation of multiple ROs within the same cells. Single molecule analysis indicated that while gRNA resided in the center of these ROs, the sgRNAs were found to radiate and migrate out of these structures. Our results also indicated that after the initial delay, there was a rapid but asynchronous replication, and the gRNA and sgRNAs dispersed throughout the cell within 4-5 hours post-infection forming multiple ROs that filled the entire cytoplasm. These results provide insight into the kinetics of early post-entry events of SARS-CoV-2 and the formation of RO, which will help to understand the molecular events associated with viral infection and facilitate the identification of new therapeutic targets that can curb the virus at a very early stage of replication to combat COVID-19. Author SummarySARS-CoV-2 infection continues to be a global burden. Soon after the entry, SARS-CoV-2 replicates by an elaborate process, producing genomic and subgenomic RNAs (gRNA and sgRNAs) within specialized structures called replication organelles (RO). Many questions including the timing of multiplication of gRNA and sgRNA, the generation, subcellular localization, and function of the ROs, and the mechanism of vRNA synthesis within ROs is not completely understood. Here, we have developed probes and methods to simultaneously detect the viral gRNA and a sgRNA at single cell single molecule resolution and have employed a method to scan thousands of cells to visualize the early kinetics of gRNA and sgRNA synthesis soon after the viral entry into the cell. Our results reveal that the replication is asynchronous and ROs are rapidly formed from a single RNA that enters the cell within 2 hours, which multiply to fill the entire cell cytoplasm within ~4 hours after infection. Furthermore, our studies provide a first glimpse of the gRNA and sgRNA synthesis within ROs at single molecule resolution. Our studies may facilitate the development of drugs that inhibit the virus at the earliest possible stages of replication to minimize the pathogenic impact of viral infection.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-512927

ABSTRACT

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic--Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans. One sentence summarySystematic proteomic and genomic analyses of SARS-CoV-2 variants of concern reveal how variant-specific mutations alter viral gene expression, virus-host protein complexes, and the host response to infection with applications to therapy and future pandemic preparedness.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-512708

ABSTRACT

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro, and in the Syrian golden hamster model in vivo. In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARYSARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-498881

ABSTRACT

Antiviral therapeutics to treat SARS-CoV-2 are much desired for the on-going pandemic. A well-precedented viral enzyme is the main protease (MPro), which is now targeted by an approved drug and by several investigational drugs. With the inevitable liabilities of these new drugs, and facing viral resistance, there remains a call for new chemical scaffolds against MPro. We virtually docked 1.2 billion non-covalent and a new library of 6.5 million electrophilic molecules against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 M and 20 M, respectively. Several series were optimized, resulting in inhibitors active in the low micromolar range. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. Together, these compounds reveal new chemotypes to aid in further discovery of MPro inhibitors for SARS-CoV-2 and other future coronaviruses.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-485247

ABSTRACT

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-22270676

ABSTRACT

There is still a need for safe, efficient and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at low cost similar to influenza virus vaccines and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737. Funding was provided by Avimex and CONACYT.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-22270253

ABSTRACT

Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus (NDV) vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Wuhan-Hu-1. The spike protein was stabilized and incorporated into NDV virions by removing the polybasic furin cleavage site, introducing the transmembrane domain and cytoplasmic tail of the fusion protein of NDV, and introducing six prolines for stabilization in the prefusion state. Vaccine production and clinical development was initiated in Vietnam, Thailand, and Brazil. Here the interim results from the first stage of the randomized, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial conducted at the Hanoi Medical University (Vietnam) are presented. Healthy adults aged 18-59 years, non-pregnant, and with self-reported negative history for SARS-CoV-2 infection were eligible. Participants were randomized to receive one of five treatments by intramuscular injection twice, 28 days apart: 1 g +/-CpG1018 (a toll-like receptor 9 agonist), 3 g alone, 10 g alone, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited adverse events (AEs) during 7 days and subject-reported AEs during 28 days after each vaccination. Investigators further reviewed subject-reported AEs. Secondary outcomes were immunogenicity measures (anti-spike immunoglobulin G [IgG] and pseudotyped virus neutralization). This interim analysis assessed safety 56 days after first vaccination (day 57) in treatment-exposed individuals and immunogenicity through 14 days after second vaccination (day 43) per protocol. Between March 15 and April 23, 2021, 224 individuals were screened and 120 were enrolled (25 per group for active vaccination and 20 for placebo). All subjects received two doses. The most common solicited AEs among those receiving active vaccine or placebo were all predominantly mild and included injection site pain or tenderness (<58%), fatigue or malaise (<22%), headache (<21%), and myalgia (<14%). No higher proportion of the solicited AEs were observed for any group of active vaccine. The proportion reporting vaccine-related AEs during the 28 days after either vaccination ranged from 4% to 8% among vaccine groups and was 5% in controls. No vaccine-related serious adverse event occurred. The immune response in the 10 g formulation group was highest, followed by 1 g +CpG1018, 3 g, and 1 g formulations. Fourteen days after the second vaccination, the geometric mean concentrations (GMC) of 50% neutralizing antibody against the homologous Wuhan-Hu-1 pseudovirus ranged from 56.07 IU/mL (1 g, 95% CI 37.01, 84.94) to 246.19 IU/mL (10 g, 95% CI 151.97, 398.82), with 84% to 96% of vaccine groups attaining a [≥] 4-fold increase over baseline. This was compared to a panel of human convalescent sera (N=29, 72.93 95% CI 33.00-161.14). Live virus neutralization to the B.1.617.2 (Delta) variant of concern was reduced but in line with observations for vaccines currently in use. Since the adjuvant has shown modest benefit, GMC ratio of 2.56 (95% CI, 1.4 - 4.6) for 1 g +/-CpG1018, a decision was made not to continue studying it with this vaccine. NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 g dose was advanced to phase 2 along with a 6 g dose. The 10 g dose was not selected for evaluation in phase 2 due to potential impact on manufacturing capacity. ClinicalTrials.gov NCT04830800.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-479634

ABSTRACT

A well-tolerated and cost-effective oral drug that blocks SARS-CoV-2 growth and dissemination would be a major advance in the global effort to reduce COVID-19 morbidity and mortality. Here, we show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits SARS-CoV-2 viral replication and infection in different primate and human cell models including stem cell-derived human alveolar epithelial type 2 cells. Furthermore, NTZ synergizes with remdesivir, and it broadly inhibits growth of SARS-CoV-2 variants B.1.351 (beta), P.1 (gamma), and B.1617.2 (delta) and viral syncytia formation driven by their spike proteins. Strikingly, oral NTZ treatment of Syrian hamsters significantly inhibits SARS-CoV-2-driven weight loss, inflammation, and viral dissemination and syncytia formation in the lungs. These studies show that NTZ is a novel host-directed therapeutic that broadly inhibits SARS-CoV-2 dissemination and pathogenesis in human and hamster physiological models, which supports further testing and optimization of NTZ-based therapy for SARS-CoV-2 infection alone and in combination with antiviral drugs.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-22269808

ABSTRACT

NDV-HXP-S is a recombinant Newcastle disease virus based-vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that employed for the production of influenza virus vaccines. Here we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a Phase I clinical study in Thailand. The SARS-CoV-2 neutralizing and spike binding activity of NDV-HXP-S post-vaccination serum samples was compared to that of matched samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of individuals vaccinated with BNT162b2. Interstingly, the spike binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from individuals vaccinated with the mRNA vaccine. This let us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios similar to those of convalescent sera suggesting a very high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induces a very RBD focused response with little reactivity to S2. This explains the high proportion of neutralizing antibodies since most neutralizing epitopes are located in the RBD. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers comparable to those after mRNA vaccination.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-476998

ABSTRACT

The continual emergence of SARS-CoV-2 variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant, has rendered ineffective a number of previously EUA approved SARS-CoV-2 neutralizing antibody therapies. Furthermore, even those approved antibodies with neutralizing activity against Omicron are reportedly ineffective against the subset of Omicron variants that contain a R346K substitution, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. Following a campaign of antibody discovery based on the vaccination of Harbour H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of Spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against the Omicron and Omicron + R346K variants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for use in human clinical trials.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-476685

ABSTRACT

Variants of SARS-CoV-2 have become a major public health concern due to increased transmissibility, and escape from natural immunity, vaccine protection, and monoclonal antibody therapeutics. The highly transmissible Omicron variant has up to 32 mutations within the spike protein, many more than previous variants, heightening these concerns of immune escape. There are now multiple antiviral therapeutics that have received approval for emergency use by the FDA and target both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and the main protease (Mpro), which have accumulated fewer mutations in known SARS-CoV-2 variants. Here we test nirmatrelvir (PF-07321332), and other clinically relevant SARS-CoV-2 antivirals, against a panel of SARS-CoV-2 variants, including the novel Omicron variant, in live-virus antiviral assays. We confirm that nirmatrelvir and other clinically relevant antivirals all maintain activity against all variants tested, including Omicron.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-468720

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 (COVID-19) in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 infection by experimental and/or natural infections. Domestic and large cats, mink, ferrets, hamsters, deer mice, white-tailed deer, and non-human primates have been shown to be highly susceptible, whereas other species such as mice, dogs, pigs, and cattle appear to be refractory to infection or have very limited susceptibility. Sheep (Ovis aries) are a commonly farmed domestic ruminant that have not previously been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cell cultures and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived cell cultures support SARS-CoV-2 replication. Furthermore, experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs primarily at 1-day post challenge (DPC), and also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was also observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naive sheep was not highly efficient; however, viral RNA was detected in some of the respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern (VOC), to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection, and that the alpha VOC outcompeted the ancestral lineage A strain.

14.
Preprint in English | medRxiv | ID: ppmedrxiv-21263758

ABSTRACT

BackgroundProduction of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its being developed in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. MethodsThis phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy adults aged 18-59 years, non-pregnant and negative for SARS-CoV-2 antibodies were eligible. Participants were block randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 {micro}g{+/-}CpG1018 (a toll-like receptor 9 agonist), 3 {micro}g{+/-}CpG1018, 10 {micro}g, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov (NCT04764422). FindingsBetween March 20 and April 23, 2021, 377 individuals were screened and 210 were enrolled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5{middle dot}7% to 17{middle dot}1% among vaccine groups and was 2{middle dot}9% in controls; there was no vaccine-related serious adverse event. The 10 {micro}g formulations immunogenicity ranked best, followed by 3 {micro}g+CpG1018, 3 {micro}g, 1 {micro}g+CpG1018, and 1 {micro}g formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122{middle dot}23 IU/mL (1 {micro}g, 95% CI 86{middle dot}40-172{middle dot}91) to 474{middle dot}35 IU/mL (10 {micro}g, 95% CI 320{middle dot}90-701{middle dot}19), with 93{middle dot}9% to 100% of vaccine groups attaining a [≥]4-fold increase over baseline. InterpretationNDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 {micro}g and 3 {micro}g+CpG1018 formulations advanced to phase 2. FundingNational Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA)

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-456341

ABSTRACT

SARS-CoV-2, a novel Betacoronavirus, was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks (SARS-CoV and MERS-CoV) have demonstrated the significant role of intermediate and reservoir hosts in viral maintenance and transmission cycles. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (Odocoileus virginianus) are amongst the most abundant, densely populated, and geographically widespread wild ruminant species in the United States. Human interaction with white-tailed deer has resulted in the occurrence of disease in human populations in the past. Recently, white-tailed deer fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult white-tailed deer. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A (SARS-CoV-2/human/USA/WA1/2020) and the alpha variant of concern (VOC) B.1.1.7 (SARS-CoV-2/human/USA/CA_CDC_5574/2020), through co-infection of white-tailed deer. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult white-tailed deer are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in white-tailed deer, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from virus present in tissues of principal infected deer, fetuses and contact animals.

16.
Preprint in English | bioRxiv | ID: ppbiorxiv-455290

ABSTRACT

For efficient cell entry and membrane fusion, SARS-CoV-2 spike (S) protein needs to be cleaved at two different sites, S1/S2 and S2 by different cellular proteases such as furin and TMPRSS2. Polymorphisms in the S protein can affect cleavage, viral transmission, and pathogenesis. Here, we investigated the role of arising S polymorphisms in vitro and in vivo to understand the emergence of SARS-CoV-2 variants. First, we showed that the S:655Y is selected after in vivo replication in the mink model. This mutation is present in the Gamma Variant Of Concern (VOC) but it also occurred sporadically in early SARS-CoV-2 human isolates. To better understand the impact of this polymorphism, we analyzed the in vitro properties of a panel of SARS-CoV-2 isolates containing S:655Y in different lineage backgrounds. Results demonstrated that this mutation enhances viral replication and spike protein cleavage. Viral competition experiments using hamsters infected with WA1 and WA1-655Y isolates showed that the variant with 655Y became dominant in both direct infected and direct contact animals. Finally, we investigated the cleavage efficiency and fusogenic properties of the spike protein of selected VOCs containing different mutations in their spike proteins. Results showed that all VOCs have evolved to acquire an increased spike cleavage and fusogenic capacity despite having different sets of mutations in the S protein. Our study demonstrates that the S:655Y is an important adaptative mutation that increases viral cell entry, transmission, and host susceptibility. Moreover, SARS-COV-2 VOCs showed a convergent evolution that promotes the S protein processing.

17.
Preprint in English | bioRxiv | ID: ppbiorxiv-451301

ABSTRACT

Rapid development of coronavirus disease 2019 (COVID-19) vaccines and expedited authorization for use and approval has been proven beneficial to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread and given hope in this desperate situation. It is believed that sufficient supplies and equitable allocations of vaccines are necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here we provide evidence that the NDV vector expressing an optimized spike antigen (NDV-HXP-S), upgraded from our previous construct, is a versatile vaccine that can be used live or inactivated to induce strong antibody responses and to also cross-neutralize variants of concern. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters. It is noteworthy that vaccine lots produced by existing egg-based influenza virus vaccine manufacturers in Vietnam, Thailand and Brazil exhibited excellent immunogenicity and efficacy in hamsters, demonstrating that NDV-HXP-S vaccines can be quickly produced at large-scale to meet global demands.

18.
Preprint in English | bioRxiv | ID: ppbiorxiv-446826

ABSTRACT

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.

19.
Preprint in English | medRxiv | ID: ppmedrxiv-21257505

ABSTRACT

Plitidepsin is a marine-derived cyclic-peptide that inhibits SARS-CoV-2 replication at low nanomolar concentrations by the targeting of host protein eEF1A (eukaryotic translation-elongation-factor-1A). We evaluated a model of intervention with plitidepsin in hospitalized COVID-19 adult patients where three doses were assessed (1.5, 2 and 2.5 mg/day for 3 days, as a 90-minute intravenous infusion) in 45 patients (15 per dose-cohort). Treatment was well tolerated, with only two Grade 3 treatment-related adverse events observed (hypersensitivity and diarrhea). The discharge rates by Days 8 and 15 were 56.8% and 81.8%, respectively, with data sustaining dose-effect. A mean 4.2 log10 viral load reduction was attained by Day 15. Improvement in inflammation markers was also noted in a seemingly dose-dependent manner. These results suggest that plitidepsin impacts the outcome of patients with COVID-19. One-Sentence SummaryPlitidepsin, an inhibitor of SARS-Cov-2 in vitro, is safe and positively influences the outcome of patients hospitalized with COVID-19.

20.
Preprint in English | bioRxiv | ID: ppbiorxiv-441797

ABSTRACT

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 ({Delta}NS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of {Delta}NS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a {Delta}NS1 virus results in an immediate antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that {Delta}NS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on {Delta}NS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...