Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 48(11): e2021GL093419, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34433990

ABSTRACT

The annual 14C data in tree rings is an outstanding proxy for uncovering extreme solar energetic particle (SEP) events in the past. Signatures of extreme SEP events have been reported in 774/775 CE, 992/993 CE, and ∼660 BCE. Here, we report another rapid increase of 14C concentration in tree rings from California, Switzerland, and Finland around 5410 BCE. These 14C data series show a significant increase of ∼6‰ in 5411-5410 BCE. The signature of 14C variation is very similar to the confirmed three SEP events and points to an extreme short-term flux of cosmic ray radiation into the atmosphere. The rapid 14C increase in 5411/5410 BCE rings occurred during a period of high solar activity and 60 years after a grand 14C excursion during 5481-5471 BCE. The similarity of our 14C data to previous events suggests that the origin of the 5410 BCE event is an extreme SEP event.

2.
Nat Commun ; 9(1): 1476, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29662058

ABSTRACT

The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.

SELECTION OF CITATIONS
SEARCH DETAIL
...