Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36231603

ABSTRACT

With safely managed water accessible to only 19% of the population in Ghana, the majority of its residents are at risk of drinking contaminated water. Furthermore, this water could be a potential vehicle for the transmission of antimicrobial-resistant bacteria. This study assessed the presence of bacteria and the antibiotic resistance profile of Escherichia coli and Pseudomonas aeruginosa in drinking-water sources using membrane filtration and Kirby-Bauer disc diffusion methods. A total of 524 water samples were analyzed for total coliforms, total heterotrophic bacteria, E. coli and P. aeruginosa. Samples included sachets, bottled water, tap water, borehole and well water. Most of the sachet and bottled water samples were within the limits of Ghana's standards for safe drinking water for the parameters tested. Over 50% of tap and borehole water was also free of E. coli and P. aeruginosa. Overall, of 115 E. coli isolates from tap and ground water samples, most were resistant to cefuroxime (88.7%), trimethoprim-sulfamethoxazole (62.6%) and amoxicillin-clavulanate (52.2%). P. aeruginosa isolates were most resistant to aztreonam (48%). Multidrug resistance was predominantly seen among E. coli isolates (58%). Evidence from this study calls for routine antimicrobial resistance surveillance in drinking water across the country and additional treatment of water sources at household levels.


Subject(s)
Drinking Water , Amoxicillin , Anti-Bacterial Agents/pharmacology , Aztreonam , Bacteria , Cefuroxime , Clavulanic Acid , Cross-Sectional Studies , Drinking Water/microbiology , Escherichia coli , Ghana/epidemiology , Trimethoprim, Sulfamethoxazole Drug Combination
2.
Trop Med Infect Dis ; 6(2)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34203078

ABSTRACT

Infections by Extended-Spectrum Beta-Lactamase producing Escherichia coli (ESBL-Ec) are on the increase in Ghana, but the level of environmental contamination with this organism, which may contribute to growing Antimicrobial Resistance (AMR), is unknown. Using the WHO OneHealth Tricycle Protocol, we investigated the contamination of E. coli (Ec) and ESBL-Ec in two rivers in Ghana (Odaw in Accra and Okurudu in Kasoa) that receive effluents from human and animal wastewater hotspots over a 12-month period. Concentrations of Ec, ESBL-Ec and percent ESBL-Ec/Ec were determined per 100 mL sample. Of 96 samples, 94 (98%) were positive for ESBL-Ec. concentrations per 100 mL (MCs100) of ESBL-Ec and %ESBL-Ec from both rivers were 4.2 × 104 (IQR, 3.1 × 103-2.3 × 105) and 2.79 (IQR, 0.96-6.03), respectively. MCs100 were significantly lower in upstream waters: 1.8 × 104 (IQR, 9.0 × 103-3.9 × 104) as compared to downstream waters: 1.9 × 106 (IQR, 3.7 × 105-5.4 × 106). Both human and animal wastewater effluents contributed to the increased contamination downstream. This study revealed high levels of ESBL-Ec in rivers flowing through two cities in Ghana. There is a need to manage the sources of contamination as they may contribute to the acquisition and spread of ESBL-Ec in humans and animals, thereby contributing to AMR.

3.
Trop Med Infect Dis ; 6(2)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068850

ABSTRACT

Wastewater treatment plants receive sewage containing high concentrations of bacteria and antibiotics. We assessed bacterial counts and their antibiotic resistance patterns in water from (a) influents and effluents of the Legon sewage treatment plant (STP) in Accra, Ghana and (b) upstream, outfall, and downstream in the recipient Onyasia stream. We conducted a cross-sectional study of quality-controlled water testing (January-June 2018). In STP effluents, mean bacterial counts (colony-forming units/100 mL) had reduced E. coli (99.9% reduction; 102,266,667 to 710), A. hydrophila (98.8%; 376,333 to 9603), and P. aeruginosa (99.5%; 5,666,667 to 1550). Antibiotic resistance was significantly reduced for tetracycline, ciprofloxacin, cefuroxime, and ceftazidime and increased for gentamicin, amoxicillin/clavulanate, and imipenem. The highest levels were for amoxicillin/clavulanate (50-97%) and aztreonam (33%). Bacterial counts increased by 98.8% downstream compared to the sewage outfall and were predominated by E. coli, implying intense fecal contamination from other sources. There was a progressive increase in antibiotic resistance from upstream, to outfall, to downstream. The highest resistance was for amoxicillin/clavulanate (80-83%), cefuroxime (47-73%), aztreonam (53%), and ciprofloxacin (40%). The STP is efficient in reducing bacterial counts and thus reducing environmental contamination. The recipient stream is contaminated with antibiotic-resistant bacteria listed as critically important for human use, which needs addressing.

SELECTION OF CITATIONS
SEARCH DETAIL
...