Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 125: 170194, 2020 03.
Article in English | MEDLINE | ID: mdl-31697967

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone released from the epithelium of the upper small intestine. While GIP shares common actions on the pancreatic beta cell with glucagon-like peptide-1 (GLP-1), unlike GLP-1, GIP presents a complex target for the development of diabetes and obesity therapies due to its extra-pancreatic effects on fat mass. Recent pharmacological developments, however, have provided insight into a previously unrecognized role for GIP receptor (GIPR) signaling in regulating appetite. Additionally, GIP-based therapeutics have demonstrated promising neuroprotective properties. Together these observations identify an important central component of the GIP/GIPR signaling axis, and have triggered a resurgence of research interest into the central actions of GIP. In this review, we discuss what is currently known about where GIP may act in the central nervous system (CNS), the characteristics of its target cell populations, and the physiological effects of manipulating the activity Gipr-expressing cells in the brain.


Subject(s)
Central Nervous System/drug effects , Gastric Inhibitory Polypeptide/pharmacology , Gastrointestinal Agents/pharmacology , Receptors, Gastrointestinal Hormone/metabolism , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Signal Transduction
2.
Diabetologia ; 55(9): 2445-55, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22638549

ABSTRACT

AIMS/HYPOTHESIS: Several glucose-sensing pathways have been implicated in glucose-triggered secretion of glucagon-like peptide-1 (GLP-1) from intestinal L cells. One involves glucose metabolism and closure of ATP-sensitive K(+) channels, and another exploits the electrogenic nature of Na(+)-coupled glucose transporters (SGLTs). This study aimed to elucidate the role of these distinct mechanisms in glucose-stimulated GLP-1 secretion. METHODS: Glucose uptake into L cells (either GLUTag cells or cells in primary cultures, using a new transgenic mouse model combining proglucagon promoter-driven Cre recombinase with a ROSA26tdRFP reporter) was monitored with the FLII(12)Pglu-700 µÎ´6 glucose sensor. Effects of pharmacological and genetic interference with SGLT1 or facilitative glucose transport (GLUT) on intracellular glucose accumulation and metabolism (measured by NAD(P)H autofluorescence), cytosolic Ca(2+) (monitored with Fura2) and GLP-1 secretion (assayed by ELISA) were assessed. RESULTS: L cell glucose uptake was dominated by GLUT-mediated transport, being abolished by phloretin but not phloridzin. NAD(P)H autofluorescence was glucose dependent and enhanced by a glucokinase activator. In GLUTag cells, but not primary L cells, phloretin partially impaired glucose-dependent secretion, and suppressed an amplifying effect of glucose under depolarising high K(+) conditions. The key importance of SGLT1 in GLUTag and primary cells was evident from the impairment of secretion by phloridzin or Sglt1 knockdown and failure of glucose to trigger cytosolic Ca(2+) elevation in primary L cells from Sglt1 knockout mice. CONCLUSIONS/INTERPRETATION: SGLT1 acts as the luminal glucose sensor in L cells, but intracellular glucose concentrations are largely determined by GLUT activity. Although L cell glucose metabolism depends partially on glucokinase activity, this plays only a minor role in glucose-stimulated GLP-1 secretion.


Subject(s)
Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Intestines/pathology , KATP Channels/metabolism , Phloretin/pharmacology , Sodium-Glucose Transporter 1/metabolism , Animals , Biological Transport , Cell Line , Cells, Cultured , Flow Cytometry , Gene Expression Regulation , Glucagon/metabolism , Immunohistochemistry , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...