Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Crit Rev Microbiol ; 49(3): 414-434, 2023 May.
Article in English | MEDLINE | ID: mdl-35574602

ABSTRACT

Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.


Subject(s)
Clostridioides difficile , Clostridium Infections , Probiotics , Humans , Anti-Bacterial Agents/therapeutic use , Clostridioides difficile/genetics , Clostridioides , Vancomycin/therapeutic use , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control , Probiotics/therapeutic use
2.
Ther Adv Infect Dis ; 8: 20499361211032453, 2021.
Article in English | MEDLINE | ID: mdl-35035953

ABSTRACT

There are a great number of beneficial commensal microorganisms constitutively colonizing the mucosal lining of the lungs. Alterations in the microbiota profile have been associated with several respiratory diseases such as pneumonia and allergies. Lung microbiota dysbiosis might play an important role in the pathogenic mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as elicit other opportunistic infections associated with coronavirus disease 2019 (COVID-19). With its increasing prevalence and morbidity, SARS-CoV-2 infection in pregnant mothers is inevitable. Recent evidence shows that angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) act as an entry receptor and viral spike priming protein, respectively, for SARS-CoV-2 infection. These receptor proteins are highly expressed in the maternal-fetal interface, including the placental trophoblast, suggesting the possibility of maternal-fetal transmission. In this review, we discuss the role of lung microbiota dysbiosis in respiratory diseases, with an emphasis on COVID-19 and the possible implications of SARS-CoV-2 infection on pregnancy outcome and neonatal health.

3.
J Proteome Res ; 19(4): 1824-1846, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32108472

ABSTRACT

Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Lacticaseibacillus paracasei , Probiotics , Colorectal Neoplasms/genetics , HT29 Cells , Heat-Shock Response , Humans , Membrane Proteins/genetics
4.
PLoS One ; 13(10): e0206317, 2018.
Article in English | MEDLINE | ID: mdl-30359441

ABSTRACT

Prolonged heat stress is one of the harsh conditions Lactobacillus casei strains encounter as non-starter lactic acid bacteria in dairy product manufacture. To understand the physiological and molecular mechanisms through which Lb. casei GCRL163 adapts to persistent elevated temperature, label-free quantitative proteomics of cell-free extracts was used to characterize the global responses of the strain cultured anaerobically in bioreactors at 30 to 45°C, pH 6.5, together with GC-MS for fatty acid methyl ester analysis at different growth phases. At higher growth temperatures, repression of energy-consuming metabolic pathways, such as fatty acid, nucleotide and amino acid biosynthesis, was observed, while PTS- and ABC-type transporter systems associated with uptake of nitrogen and carbon sources were up-regulated. Alkaline shock protein Asp23_2 was only detected at 45°C, expressed at high abundance, and presumptive α-L-fucosidase only at 40 and 45°C, with highly increased abundance (log2-fold change of 7) at 45°C. We identified a novel SecB homolog as a protein export chaperone putatively involved in posttranslational translocation systems, which was down-regulated as growth temperature increased and where the modelled 3D-structure shared architectural similarities with the Escherichia coli SecB protein. Membrane lipid analyses revealed temporal changes in fatty acid composition, cyclization of oleic acid to cyclopropane and novel cyclopentenyl moieties, and reduced synthesis of vaccenic acid, at higher temperatures. An 18kDa α-crystallin domain, Hsp20 family heat shock protein was more highly up-regulated in response to heat stress compared to other molecular chaperones, suggesting this protein could be a useful biomarker of prolonged heat stress in Lb. casei GCRL163.


Subject(s)
Heat-Shock Response , Lacticaseibacillus casei/metabolism , Metabolic Networks and Pathways , Bacterial Proteins/metabolism , Biomarkers/metabolism , Carbohydrate Metabolism , Computational Biology , Dairying , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Bacterial , Hot Temperature , Lacticaseibacillus casei/physiology , Lipid Metabolism , Proteomics , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...