Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 54: 110261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962186

ABSTRACT

Hyperspectral imaging, combined with deep learning techniques, has been employed to classify maize. However, the implementation of these automated methods often requires substantial processing and computing resources, presenting a significant challenge for deployment on embedded devices due to high GPU power consumption. Access to Ghanaian local maize data for such classification tasks is also extremely difficult in Ghana. To address these challenges, this research aims to create a simple dataset comprising three distinct types of local maize seeds in Ghana. The goal is to facilitate the development of an efficient maize classification tool that minimizes computational costs and reduces human involvement in the process of grading seeds for marketing and production. The dataset is presented in two parts: raw images, consisting of 4,846 images, are categorized into bad and good. Specifically, 2,211 images belong to the bad class, while 2,635 belong to the good class. Augmented images consist of 28,910 images, with 13,250 representing bad data and 15,660 representing good data. All images have been validated by experts from Heritage Seeds Ghana and are freely available for use within the research community.

2.
PLoS One ; 18(11): e0288663, 2023.
Article in English | MEDLINE | ID: mdl-38032915

ABSTRACT

Manual detection of eye diseases using retina Optical Coherence Tomography (OCT) images by Ophthalmologists is time consuming, prone to errors and tedious. Previous researchers have developed a computer aided system using deep learning-based convolutional neural networks (CNNs) to aid in faster detection of the retina diseases. However, these methods find it difficult to achieve better classification performance due to noise in the OCT image. Moreover, the pooling operations in CNN reduce resolution of the image that limits the performance of the model. The contributions of the paper are in two folds. Firstly, this paper makes a comprehensive literature review to establish current-state-of-act methods successfully implemented in retina OCT image classifications. Additionally, this paper proposes a capsule network coupled with contrast limited adaptive histogram equalization (CLAHE-CapsNet) for retina OCT image classification. The CLAHE was implemented as layers to minimize the noise in the retina image for better performance of the model. A three-layer convolutional capsule network was designed with carefully chosen hyperparameters. The dataset used for this study was presented by University of California San Diego (UCSD). The dataset consists of 84,495 X-Ray images (JPEG) and 4 categories (NORMAL, CNV, DME, and DRUSEN). The images went through a grading system consisting of multiple layers of trained graders of expertise for verification and correction of image labels. Evaluation experiments were conducted and comparison of results was done with state-of-the-art models to find out the best performing model. The evaluation metrics; accuracy, sensitivity, precision, specificity, and AUC are used to determine the performance of the models. The evaluation results show that the proposed model achieves the best performing model of accuracies of 97.7%, 99.5%, and 99.3% on overall accuracy (OA), overall sensitivity (OS), and overall precision (OP), respectively. The results obtained indicate that the proposed model can be adopted and implemented to help ophthalmologists in detecting retina OCT diseases.


Subject(s)
Retinal Diseases , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Neural Networks, Computer , Benchmarking , Hydrolases
3.
Data Brief ; 49: 109306, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37360671

ABSTRACT

Artificial Intelligence (AI) has been evident in the agricultural sector recently. The objective of AI in agriculture is to control crop pests/diseases, reduce cost, and improve crop yield. In developing countries, the agriculture sector faces numerous challenges in the form of knowledge gap between farmers and technology, disease and pest infestation, lack of storage facilities, among others. In order to resolve some of these challenges, this paper presents crop pests/disease datasets sourced from local farms in Ghana. The dataset is presented in two folds; the raw images which consists of 24,881 images (6,549-Cashew, 7,508-Cassava, 5,389-Maize, and 5,435-Tomato) and augmented images which is further split into train and test sets. The latter consists of 102,976 images (25,811-Cashew, 26,330-Cassava, 23,657-Maize, and 27,178-Tomato), categorized into 22 classes. All images are de-identified, validated by expert plant virologists, and freely available for use by the research community.

4.
IEEE Trans Neural Netw Learn Syst ; 34(7): 3501-3515, 2023 Jul.
Article in English | MEDLINE | ID: mdl-34637381

ABSTRACT

This article investigates the problem of relaxed exponential stabilization for coupled memristive neural networks (CMNNs) with connection fault and multiple delays via an optimized elastic event-triggered mechanism (OEEM). The connection fault of the two or some nodes can result in the connection fault of other nodes and cause iterative faults in the CMNNs. Therefore, the method of backup resources is considered to improve the fault-tolerant capability and survivability of the CMNNs. In order to improve the robustness of the event-triggered mechanism and enhance the ability of the event-triggered mechanism to process noise signals, the time-varying bounded noise threshold matrices, time-varying decreased exponential threshold functions, and adaptive functions are simultaneously introduced to design the OEEM. In addition, the appropriate Lyapunov-Krasovskii functionals (LKFs) with some improved delay-product-type terms are constructed, and the relaxed exponential stabilization and globally uniformly ultimately bounded (GUUB) conditions are derived for the CMNNs with connection fault and multiple delays by means of some inequality processing techniques. Finally, two numerical examples are provided to illustrate the effectiveness of the results.


Subject(s)
Neural Networks, Computer , Time Factors
5.
IEEE Trans Cybern ; 53(3): 1485-1498, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34495857

ABSTRACT

This article is concerned with the exponential synchronization of coupled memristive neural networks (CMNNs) with multiple mismatched parameters and topology-based probability impulsive mechanism (TPIM) on time scales. To begin with, a novel model is designed by taking into account three types of mismatched parameters, including: 1) mismatched dimensions; 2) mismatched connection weights; and 3) mismatched time-varying delays. Then, the method of auxiliary-state variables is adopted to deal with the novel model, which implies that the presented novel model can not only use any isolated system (regard as a node) in the coupled system to synchronize the states of CMNNs but also can use an external node, that is, not affiliated to the coupled system to synchronize the states of CMNNs. Moreover, the TPIM is first proposed to efficiently schedule information transmission over the network, possibly subject to a series of nonideal factors. The novel control protocol is more robust against these nonideal factors than the traditional impulsive control mechanism. By means of the Lyapunov-Krasovskii functional, robust analysis approach, and some inequality processing techniques, exponential synchronization conditions unifying the continuous-time and discrete-time systems are derived on the framework of time scales. Finally, a numerical example is provided to illustrate the effectiveness of the main results.

6.
Comput Intell Neurosci ; 2022: 4984490, 2022.
Article in English | MEDLINE | ID: mdl-36210972

ABSTRACT

Capsule Networks have shown great promise in image recognition due to their ability to recognize the pose, texture, and deformation of objects and object parts. However, the majority of the existing capsule networks are deterministic with limited ability to express uncertainty. Many of them tend to be overconfident on out-of-distribution data, making them less trustworthy and hence reducing their suitability for practical adoption in safety-critical areas such as health and self-driving cars. In this work, we propose a capsule network based on a variational mixture of Gaussians to train distributions of network weights as opposed to a single set of weights and enable the model to express its predictive uncertainty on out-of-distribution data. Training distributions of weights have the added advantage of avoiding overfitting on smaller datasets which are common in health and other fields. Although Bayesian neural networks are known to exhibit slow training and convergence, experimental results show that the proposed model can retrieve only relevant features, converge faster, is less computationally complex, can effectively express its predictive uncertainties, and achieve performance values that are comparable to the state-of-the-art models. This is an indication that CapsNets can exhibit the transparency, credibility, reliability, and interpretability required for practical adoption.


Subject(s)
Neural Networks, Computer , Bayes Theorem , Normal Distribution , Reproducibility of Results , Uncertainty
7.
Data Brief ; 45: 108616, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36164293

ABSTRACT

The field of deep learning has led to remarkable advancements in many areas, including banking. Identifying currency denomination type and model is challenging due to intraclass variation and different illumination conditions. Although, in this domain, many datasets regarding currency denomination type and model, e.g., Indian Currency, Thai Currency, Chinese Currency, U.K. currency, etc., have already been experimented with by different researchers. More datasets are needed from a variety of currencies, especially Ghana currency (cedi). This article presents the Ghana Currency image dataset (GC3558) of 3558 color images in 13 classes created from a high-resolution camera. The dataset is comprised of only genuine currency. The class consists of coin and paper notes: 10 pesewas coin, 20 pesewas coin, 50 pesewas coin, 1 cedi coin, 2 cedis coin, 1 cedi note, 2 cedis note, 5 cedis note, 10 cedis note, 20 cedis note, 50 cedis note, 100 cedis note and 200 cedis note. All images are de-identified, validated, and freely available for download to A.I. researchers. The dataset will help researchers evaluate their machine learning models on real-world data.

SELECTION OF CITATIONS
SEARCH DETAIL
...