Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Biol Toxicol ; 21(3-4): 163-79, 2005.
Article in English | MEDLINE | ID: mdl-16328895

ABSTRACT

In a previous study, we characterized Cd-Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation value of 0.3 micromol/L (203)Hg was measured in the presence of 100 micromol/L unlabeled Hg in the serum-free exposure medium without modification in the initial uptake rate. This phenomenon was eliminated at 4 degrees C. Mercury induced an increase in tritiated water and [(3)H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 micromol/L Hg and 2 mmol/L N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects. Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport. During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and consequently cell capacity.


Subject(s)
Cell Membrane Permeability/drug effects , Cell Size/drug effects , Cell Survival/drug effects , Mercury/pharmacology , Caco-2 Cells , Cadmium/pharmacology , Drug Interactions , Ethylmaleimide/pharmacology , Humans , Mercury/toxicity , Mercury Radioisotopes/metabolism , Sulfhydryl Compounds/metabolism
2.
J Biochem Mol Toxicol ; 19(4): 256-65, 2005.
Article in English | MEDLINE | ID: mdl-16173063

ABSTRACT

Cadmium-lead interactions for uptake were studied in the TC7 clone of human enterocytic-like Caco-2 cells as a function of inorganic metal speciation. We have previously shown that Cd uptake in these cells involves both the free cation Cd2+ and chlorocomplex (CdCln(2-n)) species. Here we show 1.9 times higher uptake levels for 109CdCln(2-n) compared to 210PbCln(2-n). Reciprocal inhibitions of chlorocomplexes were observed with a much higher inhibitory effect of Cd compared to Pb. Replacing Cl- by NO3- increased both the level of aquo ion 109Cd2+ and 109Cd accumulation. In contrast, higher levels of 210Pb2+ did not favor 210Pb uptake. For both metals, higher uptake data were recorded in the presence of SO4(2-), leading to sulfocomplex formation, compared with Cl-. Reciprocal inhibitions were minimal at high-cation levels but were significant and comparable in the presence of sulfo-complexes. We conclude that, in addition to Cd2+ (but not Pb2+), sulfocomplexes of both metals would preferentially be taken up compared to chlorocomplexes. NRAMP2 is not involved in Pb2+ uptake, and the NRAMP2-mediated Cd2+ uptake is insensitive to Pb. Uptake of Pb chlorocomplexes could involve specific mechanisms but of very low affinity, whereas uptake of Pb sulfocomplexes occurs with high affinity.


Subject(s)
Cadmium Chloride/pharmacology , Cation Transport Proteins/metabolism , Hazardous Substances/pharmacology , Iron-Binding Proteins/metabolism , Lead/pharmacology , Nitrates/pharmacology , Sulfates/pharmacology , Biological Transport/drug effects , Caco-2 Cells , Drug Antagonism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...