Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31632346

ABSTRACT

Background: Predicting undiagnosed diabetes is a critical step toward addressing the diabetes epidemic in populations of African descent worldwide. Objective: To review characteristics of equations developed, tested, or modified to predict diabetes in African descent populations. Methods: Using PubMed, Scopus, and Embase databases, a scoping review yielded 585 research articles. After removal of duplicates (n = 205), 380 articles were reviewed. After title and abstract review 328 articles did not meet inclusion criteria and were excluded. Fifty-two articles were retained. However, full text review revealed that 44 of the 52 articles did not report findings by AROC or C-statistic in African descent populations. Therefore, eight articles remained. Results: The 8 articles reported on a total of 15 prediction equation studies. The prediction equations were of two types. Prevalence prediction equations (n = 9) detected undiagnosed diabetes and were based on non-invasive variables only. Non-invasive variables included demographics, blood pressure and measures of body size. Incidence prediction equations (n = 6) predicted risk of developing diabetes and used either non-invasive variables or both non-invasive and invasive. Invasive variables required blood tests and included fasting glucose, high density lipoprotein-cholesterol (HDL), triglycerides (TG), and A1C. Prevalence prediction studies were conducted in the United States, Africa and Europe. Incidence prediction studies were conducted only in the United States. In all these studies, the performance of diabetes prediction equations was assessed by area under the receiver operator characteristics curve (AROC) or the C-statistic. Therefore, we evaluated the efficacy of these equations based on standard criteria, specifically discrimination by either AROC or C-statistic were defined as: Poor (0.50 - 0.69); Acceptable (0.70 - 0.79); Excellent (0.80 - 0.89); or Outstanding (0.90 - 1.00). Prediction equations based only on non-invasive variables reported to have poor to acceptable detection of diabetes with AROC or C-statistic 0.64 - 0.79. In contrast, prediction equations which were based on both non-invasive and invasive variables had excellent diabetes detection with AROC or C-statistic 0.80 - 0.82. Conclusion: Equations which use a combination of non-invasive and invasive variables appear to be superior in the prediction of diabetes in African descent populations than equations that rely on non-invasive variables alone.

2.
Article in English | MEDLINE | ID: mdl-31447780

ABSTRACT

Introduction: To improve detection of undiagnosed diabetes in Africa, there is movement to replace the OGTT with A1C. The performance of A1C in the absence of hemoglobin-related micronutrient deficiencies, anemia and heterozygous hemoglobinopathies is unknown. Therefore, we determined in 441 African-born blacks living in America [male: 65% (281/441), age: 38 ± 10 y (mean ± SD), BMI: 27.5 ± 4.4 kg/m2] (1) nutritional and hematologic profiles and (2) glucose tolerance categorization by OGTT and A1C. Methods: Hematologic and nutritional status were assessed. Hemoglobin <11 g/dL occurred in 3% (11/441) of patients and led to exclusion. A1C and OGTT were performed in the remaining 430 participants. ADA thresholds for A1C and OGTT were used. Diagnosis by A1C required meeting either A1C-alone or A1C&OGTT criteria. Diagnosis by OGTT-alone required detection by OGTT and not A1C. Results: Hemoglobin, mean corpuscular volume and red blood cell distribution width were 14.0 ± 1.3 g/dL, 85.5 ± 5.3 fL, and 13.2 ± 1.2% respectively. B12, folate, and iron deficiency occurred in 1% (5/430), 0% (0/430), and 4% (12/310), respectively. Heterozygous hemoglobinopathy prevalence was 18% (78/430). Overall, diabetes prevalence was 7% (32/430). A1C detected diabetes in 32% (10/32) but OGTT-alone detected 68% (22/32). Overall prediabetes prevalence was 41% (178/430). A1C detected 57% (102/178) but OGTT-alone identified 43% (76/178). After excluding individuals with heterozygous hemoglobinopathies, the rate of missed diagnosis by A1C of abnormal glucose tolerance did not change (OR: 0.99, 95% CI: 0.61, 1.62). Conclusions: In nutritionally replete Africans without anemia or heterozygous hemoglobinopathy, if only A1C is used, ~60% with diabetes and ~40% with prediabetes would be undiagnosed. Clinical Trial Registration:: www.ClinicalTrials.gov, Identifier: NCT00001853.

SELECTION OF CITATIONS
SEARCH DETAIL
...