Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Faraday Discuss ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329168

ABSTRACT

Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy - even with the aid of machine learning potentials - is a challenge that requires sub-kJ mol-1 accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ mol-1 accuracy in the sublimation enthalpies and sub-1% error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary NPT simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results show promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.

2.
Nat Commun ; 15(1): 7301, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181894

ABSTRACT

The Bernal-Fowler ice rules stipulate that each water molecule in an ice crystal should form four hydrogen bonds. However, in extreme or constrained conditions, the arrangement of water molecules deviates from conventional ice rules, resulting in properties significantly different from bulk water. In this study, we employ machine learning-driven first-principles simulations to identify a new stabilization mechanism in nanoconfined ice phases. Instead of forming four hydrogen bonds, nanoconfined crystalline ice can form a quasi-one-dimensional hydrogen-bonded structure that exhibits only two hydrogen bonds per water molecule. These structures consist of strongly hydrogen-bonded linear chains of water molecules that zig-zag along one dimension, stabilized by van der Waals interactions that stack these chains along the other dimension. The unusual interplay of hydrogen bonding and van der Waals interactions in nanoconfined ice results in atypical proton behavior such as potential ferroelectric behavior, low dielectric response, and long-range proton dynamics.

6.
J Chem Theory Comput ; 20(4): 1600-1611, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37877821

ABSTRACT

The efficient calculation of nucleation collective variables (CVs) is one of the main limitations to the application of enhanced sampling methods to the investigation of nucleation processes in realistic environments. Here we discuss the development of a graph-based model for the approximation of nucleation CVs that enables orders-of-magnitude gains in computational efficiency in the on-the-fly evaluation of nucleation CVs. By performing simulations on a nucleating colloidal system mimicking a multistep nucleation process from solution, we assess the model's efficiency in both postprocessing and on-the-fly biasing of nucleation trajectories with pulling, umbrella sampling, and metadynamics simulations. Moreover, we probe and discuss the transferability of graph-based models of nucleation CVs across systems using the model of a CV based on sixth-order Steinhardt parameters trained on a colloidal system to drive the nucleation of crystalline copper from its melt. Our approach is general and potentially transferable to more complex systems as well as to different CVs.

SELECTION OF CITATIONS
SEARCH DETAIL