Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 21(21): 8952-8959, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34723554

ABSTRACT

The pursuit of miniaturized optical sources for on-chip applications has led to the development of surface plasmon polariton lasers (plasmonic lasers). While applications in spectroscopy and information technology would greatly benefit from the facile and active tuning of the output wavelength from such devices, this topic remains underexplored. Here, we demonstrate optically controlled switching between predefined wavelengths within a plasmonic microlaser. After fabricating Fabry-Pérot plasmonic cavities that consist of two curved block reflectors on an ultrasmooth flat Ag surface, we deposit a thin film of CdSe/CdxZn1-xS/ZnS colloidal core/shell/shell nanoplatelets (NPLs) as the gain medium. Our cavity geometry allows the spatial and energetic separation of transverse modes. By spatially modulating the gain profile within this device, we demonstrate active selection and switching between four transverse modes within a single plasmonic laser. The fast buildup and decay of the plasmonic modes promises picosecond switching times, given sufficiently rapid changes in the structured illumination.

2.
ACS Nano ; 15(6): 9935-9944, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34029074

ABSTRACT

Plasmonic modes in optical cavities can be amplified through stimulated emission. Using this effect, plasmonic lasers can potentially provide chip-integrated sources of coherent surface plasmon polaritons (SPPs). However, while plasmonic lasers have been experimentally demonstrated, they have not generated propagating plasmons as their primary output signal. Instead, plasmonic lasers typically involve significant emission of free-space photons that are intentionally outcoupled from the cavity by Bragg diffraction or that leak from reflector edges due to uncontrolled scattering. Here, we report a simple cavity design that allows for straightforward extraction of the lasing mode as SPPs while minimizing photon leakage. We achieve plasmonic lasing in 10-µm-long distributed-feedback cavities consisting of a Ag surface periodically patterned with ridges coated by a thin layer of colloidal semiconductor nanoplatelets as the gain material. The diffraction to free-space photons from cavities designed with second-order feedback allows a direct experimental examination of the lasing-mode profile in real- and momentum-space, in good agreement with coupled-wave theory. In contrast, we demonstrate that first-order-feedback cavities remain "dark" above the lasing threshold and the output signal leaves the cavity as propagating SPPs, highlighting the potential of such lasers as on-chip sources of plasmons.

3.
J Mater Chem B ; 9(13): 3038-3046, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33885665

ABSTRACT

Deep-tissue fluorescence imaging remains a major challenge as there is limited availability of bright biocompatible materials with high photo- and chemical stability. Contrast agents with emission wavelengths above 1000 nm are most favorable for deep tissue imaging, offering deeper penetration and less scattering than those operating at shorter wavelengths. Organic fluorophores suffer from low stability while inorganic nanomaterials (e.g. quantum dots) are based typically on heavy metals raising toxicity concerns. Here, we report scalable flame aerosol synthesis of water-dispersible Ba3(VO4)2 nanoparticles doped with Mn5+ which exhibit a narrow emission band at 1180 nm upon near-infrared excitation. Their co-synthesis with Bi2O3 results in even higher absorption and ten-fold increased emission intensity. The addition of Bi2O3 also improved both chemical stability and cytocompatibility by an order of magnitude enabling imaging deep within tissue. Taken together, these bright particles offer excellent photo-, chemical and colloidal stability in various media with cytocompatibility to HeLa cells superior to existing commercial contrast agents.


Subject(s)
Biocompatible Materials/chemistry , Bismuth/chemistry , Contrast Media/chemistry , Manganese/chemistry , Oxides/chemistry , Vanadates/chemistry , HeLa Cells , Humans , Infrared Rays , Nanoparticles/chemistry , Optical Imaging
4.
J Am Chem Soc ; 143(4): 2037-2048, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33470810

ABSTRACT

Magic-sized clusters (MSCs) of semiconductor are typically defined as specific molecular-scale arrangements of atoms that exhibit enhanced stability. They often grow in discrete jumps, creating a series of crystallites, without the appearance of intermediate sizes. However, despite their long history, the mechanism behind their special stability and growth remains poorly understood. It is particularly difficult to explain experiments that have shown discrete evolution of MSCs to larger sizes well beyond the "cluster" regime and into the size range of colloidal quantum dots. Here, we study the growth of MSCs, including these larger magic-sized CdSe nanocrystals, to unravel the underlying growth mechanism. We first introduce a synthetic protocol that yields a series of nine magic-sized nanocrystals of increasing size. By investigating these crystallites, we obtain important clues about the mechanism. We then develop a microscopic model that uses classical nucleation theory to determine kinetic barriers and simulate the growth. We show that magic-sized nanocrystals are consistent with a series of zinc-blende crystallites that grow layer by layer under surface-reaction-limited conditions. They have a tetrahedral shape, which is preserved when a monolayer is added to any of its four identical facets, leading to a series of discrete nanocrystals with special stability. Our analysis also identifies strong similarities with the growth of semiconductor nanoplatelets, which we then exploit to further increase the size range of our magic-sized nanocrystals. Although we focus here on CdSe, these results reveal a fundamental growth mechanism that can provide a different approach to nearly monodisperse nanocrystals.

5.
Proc Natl Acad Sci U S A ; 115(37): 9080-9085, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30150372

ABSTRACT

Recent technology developments have expanded the wavelength window for biological fluorescence imaging into the shortwave infrared. We show here a mechanistic understanding of how drastic changes in fluorescence imaging contrast can arise from slight changes of imaging wavelength in the shortwave infrared. We demonstrate, in 3D tissue phantoms and in vivo in mice, that light absorption by water within biological tissue increases image contrast due to attenuation of background and highly scattered light. Wavelengths of strong tissue absorption have conventionally been avoided in fluorescence imaging to maximize photon penetration depth and photon collection, yet we demonstrate that imaging at the peak absorbance of water (near 1,450 nm) results in the highest image contrast in the shortwave infrared. Furthermore, we show, through microscopy of highly labeled ex vivo biological tissue, that the contrast improvement from water absorption enables resolution of deeper structures, resulting in a higher imaging penetration depth. We then illustrate these findings in a theoretical model. Our results suggest that the wavelength-dependent absorptivity of water is the dominant optical property contributing to image contrast, and is therefore crucial for determining the optimal imaging window in the infrared.


Subject(s)
Infrared Rays , Models, Theoretical , Optical Imaging/methods , Water/chemistry , Animals , Mice , Optical Imaging/instrumentation
6.
Lab Chip ; 17(9): 1678, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28426092

ABSTRACT

Correction for 'High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes' by Chengzhi Hu et al., Lab Chip, 2017, 17, 671-680.

7.
Lab Chip ; 17(4): 671-680, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28098283

ABSTRACT

Pollen tubes are tip-growing plant cells that deliver the sperm cells to the ovules for double fertilization of the egg cell and the endosperm. Various directional cues can trigger the reorientation of pollen tube growth direction on their passage through the female tissues. Among the external stimuli, protons serve an important, regulatory role in the control of pollen tube growth. The generation of local guidance cues has been challenging when investigating the mechanisms of perception and processing of such directional triggers in pollen tubes. Here, we developed and characterized a microelectrode device to generate a local proton gradient and proton flux through water electrolysis. We confirmed that the cytoplasmic pH of pollen tubes varied with environmental pH change. Depending on the position of the pollen tube tip relative to the proton gradient, we observed alterations in the growth behavior, such as bursting at the tip, change in growth direction, or complete growth arrest. Bursting and growth arrest support the hypothesis that changes in the extracellular H+ concentration may interfere with cell wall integrity and actin polymerization at the growing tip. A change in growth direction for some pollen tubes implies that they can perceive the local proton gradient and respond to it. We also showed that the growth rate is directly correlated with the extracellular pH in the tip region. Our microelectrode approach provides a simple method to generate protons and investigate their effect on plant cell growth.


Subject(s)
Microelectrodes , Pollen Tube , Protons , Tissue Culture Techniques/methods , Equipment Design , Hydrogen-Ion Concentration , Lab-On-A-Chip Devices , Lilium/cytology , Lilium/growth & development , Lilium/physiology , Pollen Tube/cytology , Pollen Tube/growth & development , Pollen Tube/physiology , Tissue Culture Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...