Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 24(8): 8054-65, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137244

ABSTRACT

This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation.

2.
Opt Lett ; 31(8): 1094-6, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16625914

ABSTRACT

We report a procedure to detect mid-infrared single photons at 4.65 microm by means of a two-stage scheme based on sum-frequency generation, by using a periodically poled lithium niobate nonlinear crystal and a silicon avalanche photodiode. An experimental investigation shows that, in addition to a high timing resolution, this technique yields a detection sensitivity of 1.24 pW with 63 mW of net pump power.

3.
Opt Express ; 14(24): 11660-7, 2006 Nov 27.
Article in English | MEDLINE | ID: mdl-19529585

ABSTRACT

In this Letter, we report the tuning of the emission wavelength of a single mode distributed feedback quantum cascade laser by modifying the mode effective refractive index using fluids. A fabrication procedure to encapsulate the devices in polymers for microfluidic delivery is also presented. The integration of microfluidics with semiconductor laser (optofluidics) is promising for new compact and portable lab-on-a-chip applications.

4.
Science ; 295(5553): 301-5, 2002 Jan 11.
Article in English | MEDLINE | ID: mdl-11786637

ABSTRACT

Continuous wave operation of quantum cascade lasers is reported up to a temperature of 312 kelvin. The devices were fabricated as buried heterostructure lasers with high-reflection coatings on both laser facets, resulting in continuous wave operation with optical output power ranging from 17 milliwatts at 292 kelvin to 3 milliwatts at 312 kelvin, at an emission wavelength of 9.1 micrometers. The results demonstrate the potential of quantum cascade lasers as continuous wave mid-infrared light sources for high-resolution spectroscopy, chemical sensing applications, and free-space optical communication systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...