Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(50): 18352-18360, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38059473

ABSTRACT

Parkinson's disease (PD) is a highly prevalent neurodegenerative disorder affecting the motor system. However, the correct diagnosis of PD and atypical parkinsonism may be difficult with high clinical uncertainty. There is an urgent need to identify reliable biomarkers using high-throughput, molecular-specific methods to improve current diagnostics. Here, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging method that requires minimal sample preparation and only 1 µL of crude cerebrospinal fluid (CSF). The method enables analysis of hundreds of samples in a single experiment while simultaneously detecting numerous metabolites with subppm mass accuracy. To test the method, we analyzed CSF samples from 12 de novo PD patients (that is, newly diagnosed and previously untreated) and 12 age-matched controls. Within the identified molecules, we found neurotransmitters and their metabolites such as γ-aminobutyric acid, 3-methoxytyramine, homovanillic acid, serotonin, histamine, amino acids, and metabolic intermediates. Limits of detection were estimated for multiple neurotransmitters with high linearity (R2 > 0.99) and sensitivity (as low as 16 pg/µL). Application of multivariate classification led to a highly significant (P < 0.001) model of PD prediction with a 100% classification rate, which was further thoroughly validated with a permutation test and univariate analysis. Molecules related to the neuromelanin pathway were found to be significantly increased in the PD group, indicated by their elevated relative intensities compared to the control group. Our method enables rapid detection of PD-related biomarkers in low sample volumes and could serve as a valuable tool in the development of robust PD diagnostics.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Clinical Decision-Making , Uncertainty , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Biomarkers/cerebrospinal fluid , Neurotransmitter Agents , Lasers
2.
J Proteome Res ; 22(4): 1377-1380, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36866861

ABSTRACT

We have used household consumables to facilitate electrochemical etching of stainless-steel hypodermic tubing to produce tapered-tip emitters suitable for electrospray ionization for use in mass spectrometry. The process involves the use of 1% oxalic acid and a 5 W USB power adapter, commonly known as a phone charger. Further, our method avoids the otherwise commonly used strong acids that entail chemical hazards: concentrated HNO3 for etching stainless steel, or concentrated HF for etching fused silica. Hence, we here provide a convenient and self-inhibiting procedure with minimal chemical hazards to manufacture tapered-tip stainless-steel emitters. We show its performance in metabolomic analysis with CE-MS of a tissue homogenate where the metabolites acetylcarnitine, arginine, carnitine, creatine, homocarnosine, and valerylcarnitine were identified, all with basepeak separated electropherograms, within <6 min of separation. The mass spectrometry data are freely available through the MetaboLight public data repository via access number MTBLS7230.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Stainless Steel , Spectrometry, Mass, Electrospray Ionization/methods , Electrophoresis, Capillary/methods , Carnitine , Silicon Dioxide/chemistry
3.
Anal Chem ; 95(2): 1149-1158, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36546842

ABSTRACT

Currently, fast liquid chromatographic separations at low temperatures are exclusively used for the separation of peptides generated in hydrogen deuterium exchange (HDX) workflows. However, it has been suggested that capillary electrophoresis may be a better option for use with HDX. We performed in solution HDX on peptides and bovine hemoglobin (Hb) followed by quenching, pepsin digestion, and cold capillary electrophoretic separation coupled with mass spectrometry (MS) detection for benchmarking a laboratory-built HDX-MS platform. We found that capillaries with a neutral coating to eliminate electroosmotic flow and adsorptive processes provided fast separations with upper limit peak capacities surpassing 170. In contrast, uncoated capillaries achieved 30% higher deuterium retention for an angiotensin II peptide standard owing to faster separations but with only half the peak capacity of coated capillaries. Data obtained using two different separation conditions on peptic digests of Hb showed strong agreement of the relative deuterium uptake between methods. Processed data for denatured versus native Hb after deuterium labeling for the longest timepoint in this study (50,000 s) also showed agreement with subunit interaction sites determined by crystallographic methods. All proteomic data are available under DOI: 10.6019/PXD034245.


Subject(s)
Hydrogen , Spectrometry, Mass, Electrospray Ionization , Hydrogen/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Deuterium/chemistry , Proteomics/methods , Peptides/chemistry , Electrophoresis, Capillary/methods , Hemoglobins/analysis , Deuterium Exchange Measurement
4.
Electrophoresis ; 44(1-2): 125-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36398998

ABSTRACT

The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.


Subject(s)
Ketamine , Animals , Horses , Stereoisomerism , Mass Spectrometry , Electrophoresis, Capillary/methods , Sulfates
5.
Analyst ; 139(22): 5835-42, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25212237

ABSTRACT

Analytical technologies that enable investigations at the single cell level facilitate a range of studies; here a lab-fabricated capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) platform was used to analyze anionic metabolites from individual Aplysia californica neurons. The system employs a customized coaxial sheath-flow nanospray interface connected to a separation capillary, with the sheath liquid and separation buffer optimized to ensure a stable spray. The method provided good repeatability of separation and reliable detection sensitivity for 16 mono-, di- and triphosphate nucleosides. For a range of anionic analytes, including cyclic adenosine monophosphate (cAMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), the detection limits were in the low nanomolar range (<22 nM). A large Aplysia R2 neuron was used to demonstrate the ability of CE-ESI-MS to quantitatively characterize anionic metabolites within individual cells, with 15 nucleotides and derivatives detected. Following the method validation process, we probed smaller, 60 µm diameter Aplysia sensory neurons where sample stacking was used as a simple on-line analyte preconcentration approach. The calculated energy balance ([ATP] + 0.5 × [ADP])/([AMP] + [ADP] + [ATP]) of these cells was comparable with the value obtained from bulk samples.


Subject(s)
Nucleotides/analysis , Single-Cell Analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Aplysia , Limit of Detection
6.
Anal Chem ; 86(18): 9139-45, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25133532

ABSTRACT

Mass spectrometry imaging (MSI) is a versatile tool for visualizing molecular distributions in complex biological specimens, but locating microscopic chemical features of interest can be challenging in samples that lack a well-defined anatomy. To address this issue, we developed a correlated imaging approach that begins with performing matrix-assisted laser desorption/ionization (MALDI) MSI to obtain low-resolution molecular maps of a sample. The resulting maps are then used to direct subsequent microscopic secondary ion mass spectrometry (SIMS) imaging and tandem mass spectrometry (MS/MS) experiments to examine selected chemical regions of interest. By employing MALDI undersampling, the sample surface is left mostly unperturbed and available for the SIMS analysis, while also generating an ablation array that can be used for navigation in SIMS. We validated this MALDI-guided SIMS approach using cultured biofilms of the opportunistic pathogen Pseudomonas aeruginosa; bioactive secondary metabolites, including rhamnolipids and quinolones, were detected and visualized on both macro- and microscopic size scales. MSI mass assignments were confirmed with in situ MALDI MS/MS and capillary electrophoresis-electrospray ionization MS/MS analysis of biofilm extracts. Two strains of P. aeruginosa were compared, wild type and a quorum sensing mutant, and differences in metabolite abundance and distribution were observed.


Subject(s)
Biofilms/growth & development , Metabolome , Pseudomonas aeruginosa/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Secondary Ion , Electrophoresis, Capillary , Glycolipids/analysis , Quinolones/analysis , Quorum Sensing/genetics
7.
Anal Chem ; 86(6): 3203-8, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24559180

ABSTRACT

The visual selection of specific cells within an ex vivo brain slice, combined with whole-cell patch clamp recording and capillary electrophoresis (CE)-mass spectrometry (MS)-based metabolomics, yields high chemical information on the selected cells. By providing access to a cell's intracellular environment, the whole-cell patch clamp technique allows one to record the cell's physiological activity. A patch clamp pipet is used to withdraw ∼3 pL of cytoplasm for metabolomic analysis using CE-MS. Sampling the cytoplasm, rather than an intact isolated neuron, ensures that the sample arises from the cell of interest and that structures such as presynaptic terminals from surrounding, nontargeted neurons are not sampled. We sampled the rat thalamus, a well-defined system containing gamma-aminobutyric acid (GABA)-ergic and glutamatergic neurons. The approach was validated by recording and sampling from glutamatergic thalamocortical neurons, which receive major synaptic input from GABAergic thalamic reticular nucleus neurons, as well as neurons and astrocytes from the ventral basal nucleus and the dorsal lateral geniculate nucleus. From the analysis of the cytoplasm of glutamatergic cells, approximately 60 metabolites were detected, none of which corresponded to the compound GABA. However, GABA was successfully detected when sampling the cytoplasm of GABAergic neurons, demonstrating the exclusive nature of our cytoplasmic sampling approach. The combination of whole-cell patch clamp with single cell cytoplasm metabolomics provides the ability to link the physiological activity of neurons and astrocytes with their neurochemical state. The observed differences in the metabolome of these neurons underscore the striking cell to cell heterogeneity in the brain.


Subject(s)
Electrophoresis, Capillary/methods , Mass Spectrometry/methods , Metabolomics , Patch-Clamp Techniques
8.
Neuropsychopharmacology ; 39(1): 50-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23748227

ABSTRACT

Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.


Subject(s)
Brain Chemistry , Cell Communication , Microchemistry/methods , Signal Transduction , Animals , Functional Neuroimaging/methods , Humans , Mass Spectrometry/methods , Tissue Array Analysis/methods
9.
Nat Protoc ; 8(4): 783-99, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23538882

ABSTRACT

Single-cell mass spectrometry (MS) empowers metabolomic investigations by decreasing analytical dimensions to the size of individual cells and subcellular structures. We describe a protocol for investigating and quantifying metabolites in individual isolated neurons using single-cell capillary electrophoresis (CE) coupled to electrospray ionization (ESI) time-of-flight (TOF) MS. The protocol requires ∼2 h for sample preparation, neuron isolation and metabolite extraction, and 1 h for metabolic measurement. We used the approach to detect more than 300 distinct compounds in the mass range of typical metabolites in various individual neurons (25-500 µm in diameter) isolated from the sea slug (Aplysia californica) central and rat (Rattus norvegicus) peripheral nervous systems. We found that a subset of identified compounds was sufficient to reveal metabolic differences among freshly isolated neurons of different types and changes in the metabolite profiles of cultured neurons. The protocol can be applied to the characterization of the metabolome in a variety of smaller cells and/or subcellular domains.


Subject(s)
Mass Spectrometry/methods , Metabolomics/methods , Neurons/metabolism , Single-Cell Analysis/methods , Animals , Aplysia/cytology , Electrophoresis, Capillary/methods , Metabolome , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...