Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Arthroscopy ; 26(10): 1302-10, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20887929

ABSTRACT

PURPOSE: To investigate the effects of anterior cruciate ligament (ACL) deficiency and nonanatomic single-bundle (SB) and anatomic double-bundle (DB) ACL reconstruction on the contact characteristics of the patellofemoral (PF) joint. METHODS: By use of a materials testing system, 7 fresh-frozen human cadaveric knees were tested. The following states were tested: ACL-intact knee, nonanatomic SB ACL reconstruction, anatomic DB ACL reconstruction, and ACL-deficient knee. Hamstring autografts were used. PF contact pressures and areas were measured with pressure-sensitive film at 30°, 60°, and 90° of knee flexion with a constant 100-N load on the quadriceps tendon. RESULTS: The total contact area of ACL-deficient and nonanatomic SB ACL-reconstructed knees (123.8 ± 63.9 and 149.6 ± 79.3 mm(2), respectively) significantly decreased when compared with those of the intact knee (206.1 ± 83.6 mm(2)) at 30° of knee flexion. The lateral-facet peak pressure of ACL-deficient and nonanatomic SB ACL-reconstructed knees (1.12 ± 0.52 and 1.22 ± 0.54 MPa, respectively) significantly decreased when compared with those of the intact knee (0.68 ± 0.38 MPa) at 90° of knee flexion. Anatomic DB ACL reconstruction restored the contact pressures and areas to values similar to those of the intact knee (no significant difference). CONCLUSIONS: ACL deficiency resulted in a significant decrease in the total and medial PF contact areas and in an increase in the lateral PF contact pressure. Anatomic DB ACL reconstruction more closely restored normal PF contact area and pressure than did nonanatomic SB ACL reconstruction. CLINICAL RELEVANCE: Our findings suggest that the changes in the PF contact area and pressures in ACL deficiency and after nonanatomic SB ACL reconstruction may be one of the causes of PF osteoarthritis or other related PF problems found at long-term follow-up. Anatomic DB ACL reconstruction may reduce the incidence of PF problems by closely restoring the contact area and pressure.


Subject(s)
Epithelium, Corneal/surgery , Femur/anatomy & histology , Patella/anatomy & histology , Patellofemoral Joint/anatomy & histology , Plastic Surgery Procedures/methods , Cadaver , Epithelium, Corneal/anatomy & histology , Female , Femur/physiology , Femur/surgery , Humans , Male , Middle Aged , Patella/physiology , Patella/surgery , Pressure , Quadriceps Muscle/anatomy & histology , Quadriceps Muscle/surgery , Range of Motion, Articular , Tendons/anatomy & histology , Tendons/surgery , Tibia/anatomy & histology , Tibia/physiology , Tibia/surgery , Transplantation, Autologous/methods
2.
Knee Surg Sports Traumatol Arthrosc ; 18(9): 1226-31, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20390250

ABSTRACT

The objective of this study was to investigate the accurate AM and PL tunnel positions in an anatomical double-bundle ACL reconstruction using human cadaver knees with an intact ACL. Fifteen fresh-frozen non-paired adult human knees with a median age of 60 were used. AM and PL bundles were identified by the difference in tension patterns. First, the center of femoral PL and AM bundles were marked with a K-wire and cut from the femoral insertion site. Next, each bundle was divided at the tibial side, and the center of each AM and PL tibial insertion was again marked with a K-wire. Tunnel placement was evaluated using a C-arm radiographic device. For the femoral side assessment, Bernard and Hertel's technique was used. For the tibial side assessment, Staubli's technique was used. After radiographic evaluations, all tibias' soft tissues were removed with a 10% NaOH solution, and tunnel placements were evaluated. In the radiographic evaluation, the center of the femoral AM tunnel was placed at 15% in a shallow-deep direction and at 26% in a high-low direction. The center of the PL bundle was found at 32% in a shallow-deep direction and 52% in a high-low direction. On the tibial side, the center of the AM tunnel was placed at 31% from the anterior edge of the tibia, and the PL tunnel at 50%. The ACL tibial footprint was placed close to the center of the tibia and was oriented sagittally. AM and PL tunnels can be placed in the ACL insertions without any coalition. The native ACL insertion site has morphological variety in both the femoral and tibial sides. This study showed, anatomically and radiologically, the AM and PL tunnel positions in an anatomical ACL reconstruction. We believe that this study will contribute to an accurate tunnel placement during ACL reconstruction surgery and provide reference data for postoperative radiographic evaluation.


Subject(s)
Anterior Cruciate Ligament/anatomy & histology , Anterior Cruciate Ligament/surgery , Arthroplasty/methods , Knee Joint/anatomy & histology , Tibia/anatomy & histology , Tibia/surgery , Aged , Aged, 80 and over , Cadaver , Female , Humans , Knee Joint/surgery , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL