Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3784-3795, 2024 May.
Article in English | MEDLINE | ID: mdl-38198270

ABSTRACT

Deep learning models for medical image segmentation can fail unexpectedly and spectacularly for pathological cases and images acquired at different centers than training images, with labeling errors that violate expert knowledge. Such errors undermine the trustworthiness of deep learning models for medical image segmentation. Mechanisms for detecting and correcting such failures are essential for safely translating this technology into clinics and are likely to be a requirement of future regulations on artificial intelligence (AI). In this work, we propose a trustworthy AI theoretical framework and a practical system that can augment any backbone AI system using a fallback method and a fail-safe mechanism based on Dempster-Shafer theory. Our approach relies on an actionable definition of trustworthy AI. Our method automatically discards the voxel-level labeling predicted by the backbone AI that violate expert knowledge and relies on a fallback for those voxels. We demonstrate the effectiveness of the proposed trustworthy AI approach on the largest reported annotated dataset of fetal MRI consisting of 540 manually annotated fetal brain 3D T2w MRIs from 13 centers. Our trustworthy AI method improves the robustness of four backbone AI models for fetal brain MRIs acquired across various centers and for fetuses with various brain abnormalities.


Subject(s)
Algorithms , Artificial Intelligence , Magnetic Resonance Imaging , Fetus/diagnostic imaging , Brain/diagnostic imaging
2.
Acta Chir Belg ; 124(1): 62-65, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36632772

ABSTRACT

Background: Gallbladder torsion is a rare cause of an acute abdomen, predominantly occurring in elderly women and less frequently diagnosed in the pediatric population. The diagnosis is difficult and rarely made preoperatively. However, suspicion needs to be raised in children with acute onset of abdominal pain. Ultrasound can demonstrate different signs putting forward the diagnosis but findings are often non-specific, therefore clinical suspicion should prompt a laparoscopic exploration.Case presentation: We report a case of a 12-month old girl consulting with progressive abdominal discomfort and vomiting. Ultrasound revealed an enlarged gallbladder with thickening of the wall but without demonstrable color Doppler flow and a more horizontal orientation outside its normal anatomic fossa. Gallbladder torsion was suspected. Emergency laparoscopic exploration confirmed the diagnosis and a laparoscopic cholecystectomy was performed. The postoperative course was uneventful.Conclusions: Gallbladder torsion, although rare, should be included in the differential diagnosis of an acute abdomen in children. Early recognition is necessary for a favorable outcome. The diagnosis might be supported by ultrasound but remains difficult, which is why laparoscopic exploration should be considered when the diagnosis remains unclear.


Subject(s)
Abdomen, Acute , Gallbladder Diseases , Humans , Female , Child , Aged , Infant , Abdomen, Acute/etiology , Torsion Abnormality/diagnosis , Abdominal Pain/etiology , Gallbladder Diseases/surgery
3.
Am J Obstet Gynecol ; 230(4): 456.e1-456.e9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37816486

ABSTRACT

BACKGROUND: The diagnosis of corpus callosum anomalies by prenatal ultrasound has improved over the last decade because of improved imaging techniques, scanning skills, and the routine implementation of transvaginal neurosonography. OBJECTIVE: Our aim was to investigate all cases of incomplete agenesis of the corpus callosum and to report the sonographic characteristics, the associated anomalies, and the perinatal outcomes. STUDY DESIGN: We performed a retrospective analysis of cases from January 2007 to December 2017 with corpus callosum anomalies, either referred for a second opinion or derived from the prenatal ultrasound screening program in a single tertiary referral center. Cases with complete agenesis were excluded from the analysis. Standardized investigation included a detailed fetal ultrasound including neurosonogram, fetal karyotyping (standard karyotype or array comparative genomic hybridization) and fetal magnetic resonance imaging. The pregnancy outcome was collected, and pathologic investigation in case of termination of the pregnancy or fetal or neonatal loss was compared with the prenatal findings. The pregnancy and fetal or neonatal outcomes were reported. The neurologic assessment was conducted by a pediatric neurologist using the Bayley Scales of Infant Development-II and the standardized Child Development Inventory when the Bayley investigation was unavailable. RESULTS: Corpus callosum anomalies were diagnosed in 148 cases during the study period, 62 (41.9%) of which were excluded because of complete agenesis, and 86 fetuses had partial agenesis (58.1%). In 20 cases, partial agenesis (23.2%) was isolated, whereas 66 (76.7%) presented with different malformations among which 29 cases (43.9%) were only central nervous system lesions, 21 cases (31.8%) were non-central nervous system lesions, and 16 cases (24.3%) had a combination of central nervous system and non-central nervous system lesions. The mean gestational age at diagnosis for isolated and non-isolated cases was comparable (24.29 [standard deviation, 5.05] weeks and 24.71 [standard deviation, 5.35] weeks, respectively). Of the 86 pregnancies with partial agenesis, 46 patients opted for termination of the pregnancy. Neurologic follow-up data were available for 35 children. The overall neurologic outcome was normal in 21 of 35 children (60%); 3 of 35 (8.6%) showed mild impairment and 6 of 35 (17.1%) showed moderate impairment. The remaining 5 of 35 (14.3%) had severe impairment. The median duration of follow-up for the isolated form was 45.6 months (range, 36-52 months) and 73.3 months (range, 2-138 months) for the nonisolated form. CONCLUSION: Partial corpus callosum agenesis should be accurately investigated by neurosonography and fetal magnetic resonance imaging to describe its morphology and the associated anomalies. Genetic anomalies are frequently present in nonisolated cases. Efforts must be taken to improve ultrasound diagnosis of partial agenesis and to confirm its isolated nature to enhance parental counseling. Although 60% of children with prenatal diagnosis of isolated agenesis have a favorable prognosis later in life, they often have mild to severe disabilities including speech disorders at school age and behavior and motor deficit disorders that can emerge at a later age.


Subject(s)
Agenesis of Corpus Callosum , Corpus Callosum , Female , Infant, Newborn , Child , Pregnancy , Humans , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Retrospective Studies , Comparative Genomic Hybridization , Agenesis of Corpus Callosum/diagnostic imaging , Prenatal Diagnosis , Ultrasonography, Prenatal/methods , Magnetic Resonance Imaging/methods
4.
Acta Obstet Gynecol Scand ; 103(2): 322-333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984808

ABSTRACT

INTRODUCTION: Fetal surgery for open spina bifida (OSB) requires comprehensive preoperative assessment using imaging for appropriate patient selection and to evaluate postoperative efficacy and complications. We explored patient access and conduct of fetal magnetic resonance imaging (MRI) for prenatal assessment of OSB patients eligible for fetal surgery. We compared imaging acquisition and reporting to the International Society of Ultrasound in Obstetrics and Gynecology MRI performance guidelines. MATERIAL AND METHODS: We surveyed access to fetal MRI for OSB in referring fetal medicine units (FMUs) in the UK and Ireland, and two NHS England specialist commissioned fetal surgery centers (FSCs) at University College London Hospital, and University Hospitals KU Leuven Belgium. To study MRI acquisition protocols, we retrospectively analyzed fetal MRI images before and after fetal surgery for OSB. RESULTS: MRI for fetal OSB was accessible with appropriate specialists available to supervise, perform, and report scans. The average time to arrange a fetal MRI appointment from request was 4 ± 3 days (range, 0-10), the average scan time available was 37 ± 16 min (range, 20-80 min), with 15 ± 11 min (range, 0-30 min) extra time to repeat sequences as required. Specific MRI acquisition protocols, and MRI reporting templates were available in only 32% and 18% of units, respectively. Satisfactory T2-weighted (T2W) brain imaging acquired in three orthogonal planes was achieved preoperatively in all centers, and 6 weeks postoperatively in 96% of FSCs and 78% of referring FMUs. However, for T2W spine image acquisition referring FMUs were less able to provide three orthogonal planes presurgery (98% FSC vs. 50% FMU, p < 0.001), and 6 weeks post-surgery (100% FSC vs. 48% FMU, p < 0.001). Other standard imaging recommendations such as T1-weighted (T1W), gradient echo (GE) or echoplanar fetal brain and spine imaging in one or two orthogonal planes were more likely available in FSCs compared to FMUs pre- and post-surgery (p < 0.001). CONCLUSIONS: There was timely access to supervised MRI for OSB fetal surgery assessment. However, the provision of images of the fetal brain and spine in sufficient orthogonal planes, which are required for determining eligibility and to determine the reversal of hindbrain herniation after fetal surgery, were less frequently acquired. Our evidence suggests the need for specific guidance in relation to fetal MRI for OSB. We propose an example guidance for MRI acquisition and reporting.


Subject(s)
Spina Bifida Cystica , Pregnancy , Female , Humans , Spina Bifida Cystica/diagnostic imaging , Spina Bifida Cystica/surgery , Retrospective Studies , Gestational Age , Brain , Magnetic Resonance Imaging
5.
Children (Basel) ; 10(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38136068

ABSTRACT

Thanks to its non-invasive nature and high-resolution imaging capabilities, magnetic resonance imaging (MRI) is a valuable diagnostic tool for pediatric patients. However, the fear and anxiety experienced by young children during MRI scans often result in suboptimal image quality and the need for sedation/anesthesia. This study aimed to evaluate the effect of a smartphone application called COSMO@home to prepare children for MRI scans to reduce the need for sedation or general anesthesia. The COSMO@home app was developed incorporating mini-games and an engaging storyline to prepare children for learning goals related to the MRI procedure. A multicenter study was conducted involving four hospitals in Belgium. Eligible children aged 4-10 years were prepared with the COSMO@home app at home. Baseline, pre-scan, and post-scan questionnaires measured anxiety evolution in two age groups (4-6 years and 7-10 years). Eighty-two children participated in the study, with 95% obtaining high-quality MRI images. The app was well-received by children and parents, with minimal technical difficulties reported. In the 4-6-year-old group (N = 33), there was a significant difference between baseline and pre-scan parent-reported anxiety scores, indicating an increase in anxiety levels prior to the scan. In the 7-10-year-old group (N = 49), no significant differences were observed between baseline and pre-scan parent-reported anxiety scores. Overall, the COSMO@home app proved to be useful in preparing children for MRI scans, with high satisfaction rates and successful image outcomes across different hospitals. The app, combined with minimal face-to-face guidance on the day of the scan, showed the potential to replace or assist traditional face-to-face training methods. This innovative approach has the potential to reduce the need for sedation or general anesthesia during pediatric MRI scans and its associated risks and improve patient experience.

6.
J Belg Soc Radiol ; 107(1): 79, 2023.
Article in English | MEDLINE | ID: mdl-37808340

ABSTRACT

Teaching Point: An edematous ileocecal valve may mimic a residual intussusception after reduction. Differential diagnosis is important for therapeutic implications.

7.
Am J Obstet Gynecol MFM ; 5(11): 101156, 2023 11.
Article in English | MEDLINE | ID: mdl-37714330

ABSTRACT

BACKGROUND: Prenatal spina bifida aperta repair improves neurologic outcomes yet comes with a significant risk of prematurity and uterine scar-related complications. To reduce such complications, different fetoscopic techniques, for example, with varying numbers of ports, are being explored. This has an effect on the duration of the procedure, potentially affecting central nervous system development. Both the condition and anesthesia can affect the central nervous system, particularly the hippocampus, a region crucial for prospective and episodic memory. Previous animal studies have shown the potential influence of anesthesia, premature delivery, and maternal surgery during pregnancy on this area. OBJECTIVE: This study aimed to compare the effects of 2- vs 3-port fetoscopic spina bifida aperta repair in the fetal lamb model using neuron count of the hippocampus as the primary outcome. STUDY DESIGN: Based on the hippocampal neuron count from previous lamb experiments, we calculated that we required 5 animals per group to achieve a statistical power of ≥ 80%. A spina bifida aperta defect was developed in fetal lambs at 75 days of gestation (term: 145 days). At 100 days, fetuses underwent either a 2-port or 3-port fetoscopic repair. At 143 days, all surviving fetuses were delivered by cesarean delivery, anesthetized, and transcardially perfused with a mixture of formaldehyde and gadolinium. Next, they underwent neonatal brain and spine magnetic resonance imaging after which these organs were harvested for histology. Hippocampus, frontal cortex, caudate nucleus, and cerebellum samples were immunostained to identify neurons, astrocytes, microglia, and markers associated with cell proliferation, myelination, and synapses. The degree of hindbrain herniation and the ventricular diameter were measured on magnetic resonance images and volumes of relevant brain and medulla areas were segmented. RESULTS: Both treatment groups included 5 fetuses and 9 unoperated littermates served as normal controls. The durations for both skin-to-skin (341±31 vs 287±40 minutes; P=.04) and fetal surgery (183±30 vs 128±22; P=.01) were longer for the 2-port approach than for the 3-port approach. There was no significant difference in neuron density in the hippocampus, frontal cortex, and cerebellum. In the caudate nucleus, the neuron count was higher in the 2-port group (965±156 vs 767±92 neurons/mm2; P=.04). There were neither differences in proliferation, astrogliosis, synaptophysin, or myelin. The tip of the cerebellar vermis was closer to the foramen magnum in animals undergoing the 2-port approach than in animals undergoing the 3-port approach (-0.72±0.67 vs -2.47±0.91 mm; P=.009). There was no significant difference in the ratio of the hippocampus, caudate nucleus, or cerebellar volume to body weight. For the spine, no difference was noted in spine volume-to-body weight ratio for the lower (L1-L2), middle (L3-L4), and higher (L5-L6) levels. Compared with controls, in repaired animals, the cerebellar vermis tip laid closer to the foramen magnum, parietal ventricles were enlarged, and medulla volumes were reduced. CONCLUSION: In the experimental spina bifida fetal lamb model, a 2-port repair took 40% longer than a 3-port repair. However, there was no indication of any relevant morphologic differences in the fetal brain.


Subject(s)
Spina Bifida Cystica , Spinal Dysraphism , Pregnancy , Female , Sheep , Animals , Humans , Spina Bifida Cystica/surgery , Prospective Studies , Spinal Dysraphism/surgery , Fetus , Central Nervous System , Body Weight
8.
Eur J Med Genet ; 66(11): 104855, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758165

ABSTRACT

ADNP syndrome, also known as the Helsmoortel-Van der Aa syndrome (HVDAS), is a neurodevelopmental disorder characterized by hypotonia, developmental delay, and intellectual disability. Diagnosis is typically made postnatally, and little is known about prenatal presentation of the disorder. We report a child who presented with intrauterine growth restriction, proportionate microcephaly, and an abnormal skull shape on fetal ultrasound. Whole exome sequencing performed on amniotic fluid cells showed a de novo pathogenic variant in the ADNP gene, corresponding to a diagnosis of ADNP syndrome.


Subject(s)
Abnormalities, Multiple , Autistic Disorder , Intellectual Disability , Child , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Autistic Disorder/genetics , Abnormalities, Multiple/genetics , Rare Diseases
10.
Pediatr Radiol ; 53(10): 2149-2153, 2023 09.
Article in English | MEDLINE | ID: mdl-37455276

ABSTRACT

Alexander disease is a leukodystrophy caused by mutations in the GFAP gene, primarily affecting the astrocytes. This report describes the prenatal and post-mortem neuroimaging findings in a case of genetically confirmed, fetal-onset Alexander disease with pathological correlation after termination of pregnancy. The additional value of fetal brain magnetic resonance imaging in the third trimester as a complementary evaluation tool to neurosonography is shown for suspected cases of fetal-onset Alexander disease. Diffuse signal abnormalities of the periventricular white matter in association with thickening of the fornix and optic chiasm can point towards the diagnosis. Furthermore, the presence of atypical imaging findings such as microcephaly and cortical folding abnormalities in this case broadens our understanding of the phenotypic variability of Alexander disease.


Subject(s)
Alexander Disease , Pregnancy , Female , Humans , Alexander Disease/diagnostic imaging , Alexander Disease/genetics , Alexander Disease/pathology , Glial Fibrillary Acidic Protein/genetics , Cerebral Ventricles/pathology , Radiography , Mutation , Magnetic Resonance Imaging
11.
Med Image Anal ; 88: 102833, 2023 08.
Article in English | MEDLINE | ID: mdl-37267773

ABSTRACT

In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.


Subject(s)
Image Processing, Computer-Assisted , White Matter , Pregnancy , Female , Humans , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Head , Fetus/diagnostic imaging , Algorithms , Magnetic Resonance Imaging/methods
12.
J Matern Fetal Neonatal Med ; 36(1): 2197098, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37031966

ABSTRACT

OBJECTIVES: To evaluate the concordance of conventional autopsy (CA) and postmortem magnetic resonance (MR) after termination of pregnancy (TOP) in fetuses with prenatally detected central nervous system (CNS) anomalies. Second, to determine the most informative postmortem investigation in parental counseling. METHODS: All TOPs between 2006 and 2016 with prenatally detected CNS involvement and having a postmortem MR and CA as postmortem examinations were retrospectively analyzed and concordance levels were established. RESULTS: Of 764 TOPs, 255 cases had a CNS anomaly detected prenatally (33.4%). Fetal genetic anomalies (n = 40) and cases without both postmortem MR and CA were excluded, leaving 68 cases for analysis.Disagreement between postmortem MR and CA was observed in 22 cases (32.4%). In eight cases (11.8%), more information was obtained by CA compared with MR. However, only two cases with major additional findings were found when compared with prenatal diagnosis. In 14 cases (20.6%), MR was superior to CA either because of additional cerebral anomalies undetected by CA (n = 5) and/or because of severe autolysis hindering pathology of the CNS (n = 9). CONCLUSIONS: Our data point out that an adequate postmortem evaluation, valuable in parental counseling, can be provided by a postmortem MR in 97% of the cases.Key PointsAn adequate postmortem evaluation, valuable in parental counseling, can be provided by a postmortem (PM) magnetic resonance (MR) in the majority of cases.PM MR is an excellent postmortem imaging tool for the brain.In cases with brain autolysis, PM MR is often the only informative PM investigation tool.PM MR is an essential adjunct to CA in the PM evaluation of pregnancies terminated for a central nervous system (CNS) anomaly.


Subject(s)
Abortion, Induced , Nervous System Malformations , Pregnancy , Female , Humans , Autopsy , Retrospective Studies , Magnetic Resonance Imaging/methods , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/pathology , Prenatal Diagnosis/methods , Central Nervous System/diagnostic imaging , Magnetic Resonance Spectroscopy , Ultrasonography, Prenatal/methods
13.
Br J Radiol ; 96(1147): 20211010, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35234516

ABSTRACT

The placenta is both the literal and metaphorical black box of pregnancy. Measurement of the function of the placenta has the potential to enhance our understanding of this enigmatic organ and serve to support obstetric decision making. Advanced imaging techniques are key to support these measurements. This review summarises emerging imaging technology being used to measure the function of the placenta and new developments in the computational analysis of these data. We address three important examples where functional imaging is supporting our understanding of these conditions: fetal growth restriction, placenta accreta, and twin-twin transfusion syndrome.


Subject(s)
Placenta Accreta , Placenta , Pregnancy , Female , Humans , Placenta/diagnostic imaging , Placenta Accreta/diagnostic imaging , Pelvis
14.
Pediatr Radiol ; 53(5): 929-941, 2023 05.
Article in English | MEDLINE | ID: mdl-36580101

ABSTRACT

BACKGROUND: Postmortem fetal magnetic resonance imaging (MRI) has been on the rise since it was proven to be a good alternative to conventional autopsy. Since the fetal brain is sensitive to postmortem changes, extensive tissue fixation is required for macroscopic and microscopic assessment. Estimation of brain maceration on MRI, before autopsy, may optimize histopathological resources. OBJECTIVE: The aim of the study is to develop an MRI-based postmortem fetal brain maceration score and to correlate it with brain maceration as assessed by autopsy. MATERIALS AND METHODS: This retrospective single-center study includes 79 fetuses who had postmortem MRI followed by autopsy. Maceration was scored on MRI on a numerical severity scale, based on our brain-specific maceration score and the whole-body score of Montaldo. Additionally, maceration was scored on histopathology with a semiquantitative severity scale. Both the brain-specific and the whole-body maceration imaging scores were correlated with the histopathological maceration score. Intra- and interobserver agreements were tested for the brain-specific maceration score. RESULTS: The proposed brain-specific maceration score correlates well with fetal brain maceration assessed by autopsy (τ = 0.690), compared to a poorer correlation of the whole-body method (τ = 0.452). The intra- and interobserver agreement was excellent (correlation coefficients of 0.943 and 0.864, respectively). CONCLUSION: We present a brain-specific postmortem MRI maceration score that correlates well with the degree of fetal brain maceration seen at histopathological exam. The score is reliably reproduced by different observers with different experience.


Subject(s)
Fetal Death , Postmortem Changes , Female , Humans , Autopsy/methods , Retrospective Studies , Fetus/diagnostic imaging , Fetus/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
15.
Pediatr Radiol ; 53(2): 273-281, 2023 02.
Article in English | MEDLINE | ID: mdl-36097227

ABSTRACT

BACKGROUND: Perinatal and childhood postmortem imaging has been accepted as a noninvasive alternative or adjunct to autopsy. However, the variation in funding models from institution to institution is a major factor prohibiting uniform provision of this service. OBJECTIVE: To describe current funding models employed in European and non-European institutions offering paediatric postmortem imaging services and to discuss the perceived barriers to future postmortem imaging service provision. MATERIALS AND METHODS: A web-based 16-question survey was distributed to members of the European Society of Paediatric Radiology (ESPR) and ESPR postmortem imaging task force over a 6-month period (March-August 2021). Survey questions related to the radiologic and autopsy services being offered and how each was funded within the respondent's institute. RESULTS: Eighteen individual responses were received (13/18, 72.2% from Europe). Only one-third of the institutions (6/18, 33.3%) have fully funded postmortem imaging services, with the remainder receiving partial (6/18, 33.3%) or no funding (5/18, 27.8%). Funding (full or partial) was more commonly available for forensic work (13/18, 72%), particularly where this was nationally provided. Where funding was not provided, the imaging and reporting costs were absorbed by the institute. CONCLUSION: Increased access is required for the expansion of postmortem imaging into routine clinical use. This can only be achieved with formal funding on a national level, potentially through health care commissioning and acknowledgement by health care policy makers and pathology services of the value the service provides following the death of a fetus or child. Funding should include the costs involved in training, equipment, reporting and image acquisition.


Subject(s)
Diagnostic Imaging , Radiology , Pregnancy , Female , Child , Humans , Autopsy/methods , Diagnostic Imaging/methods , Forensic Medicine , Surveys and Questionnaires
16.
J Belg Soc Radiol ; 106(1): 130, 2022.
Article in English | MEDLINE | ID: mdl-36569393

ABSTRACT

In open spina bifida we studied the use of MRI for the assessment of the posterior fossa and prevalence of supratentorial anomalies before and after in utero repair. New postprocessing techniques were applied to evaluate fetal brain development in this population compared to controls. In fetuses with congenital diaphragmatic hernia, we evaluated the brain development in comparison to controls. Diffusion weighted imaging was applied to study difference between fetuses with proven first trimester cytomegalovirus infection and controls. Finally, we investigated the value of third trimester fetal brain MRI after treatment for complicated monochorionic diamniotic pregnancies.

17.
Pharmaceutics ; 14(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36145683

ABSTRACT

The volume and distribution of fluids available in the gastrointestinal (GI) tract may substantially affect oral drug absorption. Magnetic resonance imaging (MRI) has been used in the past to quantify these fluid volumes in adults and its use is now being extended to the pediatric population. The present research pursued a retrospective, explorative analysis of existing clinical MRI data generated for pediatric patients. Images of 140 children from all pediatric subpopulations were analyzed for their resting GI fluid volumes in fasting conditions. In general, an increase in fluid volume as a function of age was observed for the stomach, duodenum, jejunum, and small intestine (SI) as a whole. No specific pattern was observed for the ileum and colon. Body mass index (BMI), body weight, body height, and SI length were evaluated as easy-to-measure clinical estimators of the gastric and SI fluid volumes. Although weight and height were identified as the best estimators, none performed ideally based on the coefficient of determination (R2). Data generated in this study can be used as physiologically relevant input for biorelevant in vitro tests and in silico models tailored to the pediatric population, thereby contributing to the efficient development of successful oral drug products for children.

18.
BMC Pediatr ; 22(1): 293, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585581

ABSTRACT

BACKGROUND: Congenital cytomegalovirus infection (cCMV) is the most common known viral cause of neurodevelopmental delay in children. The risk of severe cerebral abnormalities and neurological sequelae is greatest when the infection occurs during the first trimester of pregnancy. Pre- and postnatal imaging can provide additional information and may help in the prediction of early neurological outcome. CASE PRESENTATION: This report presents the case of a newborn with cCMV infection with diffuse parenchymal calcifications, white matter (WM) abnormalities and cerebellar hypoplasia on postnatal brain imaging after magnetic resonance imaging (MRI) and neurosonogram (NSG) at 30 weeks showing lenticulostriate vasculopathy, bilateral temporal cysts and normal gyration pattern according to the gestational age (GA). No calcifications were seen on prenatal imaging. CONCLUSION: cCMV infection can still evolve into severe brain damage after 30 weeks of GA. For this reason, a two-weekly follow-up by fetal NSG with a repeat in utero MRI (iuMRI) in the late third trimester is recommended in cases with signs of active infection.


Subject(s)
Cytomegalovirus Infections , Nervous System Malformations , Brain/diagnostic imaging , Child , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/diagnostic imaging , Female , Fetus , Humans , Infant, Newborn , Magnetic Resonance Imaging/methods , Pregnancy
19.
J Gynecol Obstet Hum Reprod ; 51(6): 102401, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35490987

ABSTRACT

INTRODUCTION: Uterine hemangioma is a rare benign vascular tumor which can cause bleeding problems in various age groups. Current knowledge on this rare condition in pregnancy is limited. We report on a recent case of uterine hemangioma in a pregnancy that was already diagnosed during her first trimester. We also provide a literature review to summarize the characteristics and outcomes of uterine hemangioma cases in pregnant women. MATERIAL AND METHODS: A systematic search was done of all published literature up to February 2021 using PubMed and Scopus databases. The selection process was registered using the online tool Rayyan QCRI. All data was described in a narrative format. The protocol was prospectively registered on PROSPERO (CRD42021237519). RESULTS: Fifteen case reports were included. In most cases, the diagnosis was established by antenatal ultrasound. More than half of the women developed a postpartum hemorrhage, necessitating a hysterectomy for bleeding control in half of the cases, although the risk for both seemed lower in those women in whom the hemangioma was diagnosed before delivery. One case of maternal mortality and two cases of fetal death were reported. There was one case of neonatal respiratory morbidity, although the neonatal data were not routinely reported upon. CONCLUSION: Current knowledge on uterine hemangioma in pregnancy is limited, but it seems to hold substantial risks for both pregnant women and their unborn child. We recommend routine screening for this condition at the standard mid-trimester anomaly scan. Pregnant women with uterine hemangioma should ideally be cared for in centers of expertise. An international registry will help to build a better understanding of this rare pathology.


Subject(s)
Hemangioma , Postpartum Hemorrhage , Female , Hemangioma/complications , Humans , Hysterectomy/adverse effects , Infant, Newborn , Postpartum Hemorrhage/etiology , Postpartum Hemorrhage/surgery , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimesters
20.
Prenat Diagn ; 42(5): 628-635, 2022 05.
Article in English | MEDLINE | ID: mdl-35262959

ABSTRACT

OBJECTIVES: To calculate 3D-segmented total lung volume (TLV) in fetuses with thoracic anomalies using deformable slice-to-volume registration (DSVR) with comparison to 2D-manual segmentation. To establish a normogram of TLV calculated by DSVR in healthy control fetuses. METHODS: A pilot study at a single regional fetal medicine referral centre included 16 magnetic resonance imaging (MRI) datasets of fetuses (22-32 weeks gestational age). Diagnosis was CDH (n = 6), CPAM (n = 2), and healthy controls (n = 8). Deformable slice-to-volume registration was used for reconstruction of 3D isotropic (0.85 mm) volumes of the fetal body followed by semi-automated lung segmentation. 3D TLV were compared to traditional 2D-based volumetry. Abnormal cases referenced to a normogram produced from 100 normal fetuses whose TLV was calculated by DSVR only. RESULTS: Deformable slice-to-volume registration-derived TLV values have high correlation with the 2D-based measurements but with a consistently lower volume; bias -1.44 cm3 [95% limits: -2.6 to -0.3] with improved resolution to exclude hilar structures even in cases of motion corruption or very low lung volumes. CONCLUSIONS: Deformable slice-to-volume registration for fetal lung MRI aids analysis of motion corrupted scans and does not suffer from the interpolation error inherent to 2D-segmentation. It increases information content of acquired data in terms of visualising organs in 3D space and quantification of volumes, which may improve counselling and surgical planning.


Subject(s)
Fetus , Magnetic Resonance Imaging , Female , Fetus/diagnostic imaging , Gestational Age , Humans , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Lung Volume Measurements/methods , Magnetic Resonance Imaging/methods , Pilot Projects , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...