Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 80(11): 113109, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947719

ABSTRACT

We report on the first experimental determination of the hyperfine structure of the 1s(5)-2p(9) transition in (39)Ar. We give a detailed description of the sample preparation, spectroscopy cell cleaning, and spectroscopic setup. The resulting set of parameters consists of the hyperfine constants of the levels involved and the isotopic shift between (39)Ar and (40)Ar. With the achieved precision all laser frequencies necessary for the implementation of atom trap trace analysis for (39)Ar, i.e., laser cooling and repumping frequencies, are now known.

2.
Ground Water ; 39(6): 841-52, 2001.
Article in English | MEDLINE | ID: mdl-11708450

ABSTRACT

The hydrogeological system of an ecologically sensitive alpine floodplain in the Valle di Blenio, Switzerland, was investigated using hydrochemical and 3H-3He dating methods. Water samples from six wells and from different surface locations were analyzed. The analysis of the concentrations of major ions in conjunction with age determination by the 3H-3He-method allowed the main hydrological properties of the system to be consistently characterized. Two geochemically distinct water zones can be distinguished: Ca-SO4-dominated water from the main river and Ca-HCO3-dominated floodplain water. The floodplain water component characterizes the whole floodplain including the surficial hillslope drainage system. Within the ground water samples, two spatially and temporally different types of water can be determined. A younger (age < 1.5 years), less mineralized water is found in the upper part of the aquifer during the summer season. The underlying aquifer zone contains older and more highly mineralized water. However, the general hydrochemical characterization of both types of ground water is similar. In winter, the water ages increase with decreasing ground water levels. Because precipitation is stored temporarily in the snow cover, the contribution of the younger near-surface ground water decreases, resulting in higher apparent water ages and higher mineralization in the upper zone of the aquifer. Water exchange between the main river and the ground water system is limited to ground water exfiltration from the shallow aquifer zone, whereas the hydrochemical separation of the deeper aquifer zone indicates the isolation of the deeper ground water from the main river.


Subject(s)
Noble Gases/chemistry , Soil , Water/chemistry , Geological Phenomena , Geology , Ions , Minerals , Rain , Seasons , Water Movements
3.
Nature ; 405(6790): 1040-4, 2000 Jun 29.
Article in English | MEDLINE | ID: mdl-10890441

ABSTRACT

Noble-gas concentrations in ground water have been used as a proxy for past air temperatures, but the accuracy of this approach has been limited by the existence of a temperature-independent component of the noble gases in ground water, termed 'excess air' whose origin and composition is poorly understood. In particular, the evidence from noble gases in a Brazilian aquifer for a cooling of more than 5 C in tropical America during the Last Glacial Maximum has been called into question. Here we propose a model for dissolved gases in ground water, which describes the formation of excess air by equilibration of ground water with entrapped air in quasi-saturated soils. Our model predicts previously unexplained noble-gas data sets, including the concentration of atmospheric helium, and yields consistent results for the non-atmospheric helium isotopes that are used for dating ground water. Using this model of excess air, we re-evaluate the use of noble gases from ground water for reconstructing past temperatures. Our results corroborate the inferred cooling in Brazil during the Last Glacial Maximum, and indicate that even larger cooling took place at mid-latitudes.

4.
Science ; 287(5454): 842-5, 2000 Feb 04.
Article in English | MEDLINE | ID: mdl-10657295

ABSTRACT

Concentrations of atmospheric noble gases (neon, argon, krypton, and xenon) dissolved in groundwaters from northern Oman indicate that the average ground temperature during the Late Pleistocene (15,000 to 24,000 years before present) was 6.5 degrees +/- 0.6 degrees C lower than that of today. Stable oxygen and hydrogen isotopic groundwater data show that the origin of atmospheric water vapor changed from a primarily southern, Indian Ocean source during the Late Pleistocene to a dominantly northern, Mediterranean source today. The reduced northern water vapor source is consistent with a drier Last Glacial Maximum through much of northern Africa and Arabia.

5.
Science ; 282(5389): 731-4, 1998 Oct 23.
Article in English | MEDLINE | ID: mdl-9784128

ABSTRACT

A multitracer study of a small aquifer in northern Switzerland indicates that the atmosphere in central Europe cooled by at least 5 degreesC during the last glacial period. The relation between oxygen isotope ratios (delta18O) and recharge temperatures reconstructed for this period is similar to the present-day one if a shift in the delta18O value of the oceans during the ice age is taken into account. This similarity suggests that the present-day delta18O-temperature relation can be used to reconstruct paleoclimate conditions in northern Switzerland. A gap in calculated groundwater age between about 17,000 and 25,000 years before the present indicates that during the last glacial maximum, local groundwater recharge was prevented by overlying glaciers.

SELECTION OF CITATIONS
SEARCH DETAIL
...