Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 35(12): 2010-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26154869

ABSTRACT

Neuroinflammation following traumatic brain injury (TBI) is increasingly recognized to contribute to chronic tissue loss and neurologic dysfunction. Circulating levels of S100B increase after TBI and have been used as a biomarker. S100B is produced by activated astrocytes and can promote microglial activation; signaling by S100B through interaction with the multiligand advanced glycation end product-specific receptor (AGER) has been implicated in brain injury and microglial activation during chronic neurodegeneration. We examined the effects of S100B inhibition in a controlled cortical impact model, using S100B knockout mice or administration of neutralizing S100B antibody. Both interventions significantly reduced TBI-induced lesion volume, improved retention memory function, and attenuated microglial activation. The neutralizing antibody also significantly reduced sensorimotor deficits and improved neuronal survival in the cortex. However, S100B did not alter microglial activation in BV2 cells or primary microglial cultures stimulated by lipopolysaccharide or interferon gamma. Further, proximity ligation assays did not support direct interaction in the brain between S100B and AGER following TBI. Future studies are needed to elucidate specific pathways underlying S100B-mediated neuroinflammatory actions after TBI. Our results strongly implicate S100B in TBI-induced neuroinflammation, cell loss, and neurologic dysfunction, thereby indicating that it is a potential therapeutic target for TBI.


Subject(s)
Behavior, Animal , Brain Injuries/pathology , Brain Injuries/psychology , Brain/pathology , S100 Calcium Binding Protein beta Subunit/antagonists & inhibitors , S100 Calcium Binding Protein beta Subunit/genetics , Animals , Antibodies, Neutralizing/pharmacology , Cell Line , Inflammation/pathology , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Activation , Male , Memory , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia , Postural Balance , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Recognition, Psychology
2.
Cell Calcium ; 56(2): 68-80, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24931125

ABSTRACT

The contribution of the Ca(2+) sensor S100A1 to in vivo Alzheimer's disease (AD) pathobiology has not been elucidated although S100A1 regulates numerous cellular processes linked to AD. This study uses genetic ablation to ascertain the effects of S100A1 on neuroinflammation, beta-amyloid (Aß) plaque deposition and Akt activity in the PSAPP AD mouse model. PSAPP/S100A1(-/-) mice exhibited decreases in astrocytosis (GFAP burden), microgliosis (Iba1 burden) and plaque load/number when compared to PSAPP/S100A1(+/+) mice at six and twelve months of age. The presence of detectable S100A1 staining in human AD specimens is consistent with a detrimental gain of S100A1 function in AD. S100A1 ablation also reduced plaque associated and increased non-plaque associated PO4-Akt and PO4-GSK3ß staining. S100A1·Akt complexes were undetectable in PC12 cells and AD brain tissue suggesting that S100A1 indirectly modulates Akt activity. In contrast, S100A1·RyR (ryanodine receptor) complexes were present in human/mouse AD brain and exhibited Ca(2+)-dependent formation in neuronal cells. This is the first direct demonstration of an S100A1· target protein complex in tissue/cells and identifies the RyR as a primary S100A1 target protein in the brain. Collectively, these data suggest that S100A1 inhibition may be a novel strategy for normalizing aberrant Ca(2+) signaling in AD.


Subject(s)
Alzheimer Disease/pathology , Proto-Oncogene Proteins c-akt/metabolism , S100 Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Calcium/metabolism , Cerebral Cortex/metabolism , Disease Models, Animal , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/metabolism , Humans , Inflammation/metabolism , Male , Mice , Mice, Knockout , PC12 Cells , Plaque, Amyloid/pathology , Rats , Ryanodine Receptor Calcium Release Channel/metabolism , S100 Proteins/genetics
3.
Brain Res ; 1510: 38-47, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23524190

ABSTRACT

A large body of evidence shows that methamphetamine (METH) causes sustained damage to the brain in animal models and human METH users. In chronic users there are indications of cognitive and motor deficits. Striatal neuropeptides are in a position to modulate the neurochemical effects of METH and consequently striatal neural damage. Somatostatin (SST) is an intrinsic striatal neuropeptide that has been shown to inhibit glutamate transmission; glutamate is integral to METH toxicity and contributes to nitric oxide (NO) synthesis. We hypothesize that SST will protect from METH by inhibition of NO synthesis and thus reducing oxidative stress. To this end, the SST analogue octreotide (OCT) was microinjected into the striatum prior to a systemic injection of METH (30mg/kg). We then assessed 3-nitrotyrosine (3-NT), an indirect index of NO production, tyrosine hydroxylase (TH) protein levels (dopamine terminal marker) and Fluoro-Jade C positive cells (degenerating cells). The SST agonist OCT dose dependently attenuated the METH-induced accumulation of striatal 3-NT. Moreover, pretreatment with OCT effectively mitigated cell death but failed to protect dopamine terminals. Next we co-infused OCT and NMDA and measured 3-NT and Fluoro-Jade C staining. Treatment with OCT had no effect on these parameters. The data demonstrate that SST attenuates the METH-induced production of NO protecting the striatum from the METH-induced cell loss. However, SST failed to prevent the toxicity of the dopamine terminals suggesting that pre- and post-synaptic striatal damage occur via independent mechanisms.


Subject(s)
Corpus Striatum/metabolism , Glutamic Acid/toxicity , Methamphetamine/toxicity , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Neurotoxins/toxicity , Somatostatin/metabolism , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Fluoresceins , Male , Mice , Mice, Inbred ICR , Microinjections , Nitric Oxide/metabolism , Octreotide/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine 3-Monooxygenase/metabolism
4.
Article in English | MEDLINE | ID: mdl-25383232

ABSTRACT

Several laboratories have shown that methamphetamine (METH) neurotoxicity is associated with increases of nitric oxide (NO) production in striatal tissue and blockade of NO production protects from METH. Because substance P modulates NO production, we tested the hypothesis that intrinsic striatal neuropeptides such as somatostatin and neuropeptide Y (NPY) modulate striatal NO production in the presence of METH. To that end, METH (30 mg/kg, IP) was injected into adult male mice alone or in combination with pharmacological agonists or antagonists of the neurokinin-1 (substance P), somatostatin or NPY receptors and 3-nitrotyrosine (an indirect index of NO production) was assessed utilizing HPLC or a histological method. Pre-treatment with the systemic neurokinin-1 receptor antagonist WIN-51,708 significantly attenuated the METH-induced production of striatal 3-NT measured at two hours post-METH. Conversely, intrastriatal injection of NPY1 or 2 receptor agonists inhibited the METH-induced production of striatal 3-NT. Similarly, intrastriatal infusion of the somatostatin receptor agonist octreotide attenuated the METH-induced striatal production of 3-NT. Taken together, our results suggest the hypothesis that the neuropeptide substance P is pro-damage while the neuropeptides somatostatin and NPY are anti-damage in the presence of METH by targeting the production of NO.

SELECTION OF CITATIONS
SEARCH DETAIL
...