Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(26): 30941-30949, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34157228

ABSTRACT

Complementary to the development of highly three-dimensional (3D) integrated circuits in the continuation of Moore's law, there has been a growing interest in new 3D deformation strategies to improve the device performance. To continue this search for new 3D deformation techniques, it is essential to explore beforehand, using computational predictive methods, which strain tensor leads to the desired properties. In this work, we study germanium (Ge) under an isotropic 3D strain on the basis of first-principles methods. The transport and optical properties are studied by a fully ab initio Boltzmann transport equation and many-body Bethe-Salpeter equation (BSE) approach, respectively. Our findings show that a direct band gap in Ge could be realized with only 0.70% triaxial tensile strain (negative pressure) and without the challenges associated with Sn doping. At the same time, a significant increase in the refractive index and carrier mobility, particularly for electrons, is observed. These results demonstrate that there is a huge potential in exploring the 3D deformation space for semiconductors, and potentially many other materials, to optimize their properties.

2.
ACS Appl Mater Interfaces ; 11(45): 42697-42707, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31625717

ABSTRACT

For the integration of two-dimensional (2D) transition metal dichalcogenides (TMDC) with high-performance electronic systems, one of the greatest challenges is the realization of doping and comprehension of its mechanisms. Low-temperature atomic layer deposition of aluminum oxide is found to n-dope MoS2 and ReS2 but not WS2. Based on electrical, optical, and chemical analyses, we propose and validate a hypothesis to explain the doping mechanism. Doping is ascribed to donor states in the band gap of AlxOy, which donate electrons or not, based on the alignment of the electronic bands of the 2D TMDC. Through systematic experimental characterization, incorporation of impurities (e.g., carbon) is identified as the likely cause of such states. By modulating the carbon concentration in the capping oxide, doping can be controlled. Through systematic and comprehensive experimental analysis, this study correlates, for the first time, 2D TMDC doping to the carbon incorporation on dielectric encapsulation layers. We highlight the possibility to engineer dopant layers to control the material selectivity and doping concentration in 2D TMDC.

3.
Nanotechnology ; 30(20): 205201, 2019 May 17.
Article in English | MEDLINE | ID: mdl-30716723

ABSTRACT

Amorphous aluminum oxide Al2O3 (a-Al2O3) layers grown by various deposition techniques contain a significant density of negative charges. In spite of several experimental and theoretical studies, the origin of these charges still remains unclear. We report the results of extensive density functional theory calculations of native defects-O and Al vacancies and interstitials, as well as H interstitial centers-in different charge states in both crystalline α-Al2O3 and in a-Al2O3. The results demonstrate that both the charging process and the energy distribution of traps responsible for negative charging of a-Al2O3 films (Zahid et al 2010 IEEE Trans. Electron Devices 57 2907) can be understood assuming that the negatively charged Oi and VAl defects are nearly compensated by the positively charged Hi, VO and Ali defects in as prepared samples. Following electron injection, the states of Ali, VO or Hi in the band gap become occupied by electrons and sample becomes negatively charged. The optical excitation energies from these states into the oxide conduction band agree with the results of exhaustive photo-depopulation spectroscopy measurements (Zahid et al 2010 IEEE Trans. Electron Devices 57 2907). This new understanding of the origin of negative charging of a-Al2O3 films is important for further development of nanoelectronic devices and solar cells.

4.
J Phys Condens Matter ; 30(23): 233001, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29692368

ABSTRACT

We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)-O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2- ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.

5.
Nanotechnology ; 29(12): 125703, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29332843

ABSTRACT

We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2-3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO2 models of realistic density. The experimental results can be explained by the presence of intrinsic charge trapping sites formed by under-coordinated Hf cations and elongated Hf-O bonds in a-HfO2. These charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The corresponding trapping sites are different from the dangling-bond type defects responsible for trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge trapping in a broad class of non-glass-forming amorphous insulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...