Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Ter Arkh ; 94(11): 1225-1233, 2022 Dec 26.
Article in Russian | MEDLINE | ID: mdl-37167158

ABSTRACT

AIM: To conduct a retrospective assessment of the clinical and laboratory data of patients with severe forms of COVID-19 hospitalized in the intensive care and intensive care unit, in order to assess the contribution of various indicators to the likelihood of death. MATERIALS AND METHODS: A retrospective assessment of data on 224 patients with severe COVID-19 admitted to the intensive care unit was carried out. The analysis included the data of biochemical, clinical blood tests, coagulograms, indicators of the inflammatory response. When transferring to the intensive care units (ICU), the indicators of the formalized SOFA and APACHE scales were recorded. Anthropometric and demographic data were downloaded separately. RESULTS: Analysis of obtained data, showed that only one demographic feature (age) and a fairly large number of laboratory parameters can serve as possible markers of an unfavorable prognosis. We identified 12 laboratory features the best in terms of prediction: procalcitonin, lymphocytes (absolute value), sodium (ABS), creatinine, lactate (ABS), D-dimer, oxygenation index, direct bilirubin, urea, hemoglobin, C-reactive protein, age, LDH. The combination of these features allows to provide the quality of the forecast at the level of AUC=0.85, while the known scales provided less efficiency (APACHE: AUC=0.78, SOFA: AUC=0.74). CONCLUSION: Forecasting the outcome of the course of COVID-19 in patients in ICU is relevant not only from the position of adequate distribution of treatment measures, but also from the point of view of understanding the pathogenetic mechanisms of the development of the disease.


Subject(s)
COVID-19 , Sepsis , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Retrospective Studies , Intensive Care Units , Critical Care , Prognosis , ROC Curve
2.
Phys Rev Lett ; 114(6): 062003, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25723209

ABSTRACT

There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45 GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75 GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV(2).

3.
Phys Rev Lett ; 102(19): 192001, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19518944

ABSTRACT

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

4.
Phys Rev Lett ; 101(12): 120401, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18851343

ABSTRACT

We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 meV (milli-electron volts) and coupling strength greater than 10(-6) GeV(-1) using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.

5.
Phys Rev Lett ; 93(12): 122301, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15447254

ABSTRACT

We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the two-photon exchange amplitude to the generalized parton distributions which appear in hard exclusive processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2-photon correction does reproduce the Rosenbluth cross sections.

6.
Phys Rev Lett ; 86(14): 2975-9, 2001 Apr 02.
Article in English | MEDLINE | ID: mdl-11290086

ABSTRACT

We present measurements of the recoil proton polarization for the d(gamma-->,p-->)n reaction at straight theta(c.m.) = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization p(y) vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(gamma,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...