Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(2): 2235-2244, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297758

ABSTRACT

With wavelength tunability, free-electron lasers (FELs) are well-suited for generating orbital angular momentum (OAM) beams in a wide photon energy range. We report here the first experimental demonstration of OAM beam generation using an oscillator FEL with the tens of picosecond pulse duration. Lasing around 458 nm, we have produced the four lowest orders of superposed Laguerre-Gaussian beams using a very long FEL resonator of 53.73 m. The produced beams have good beam quality, excellent stability, and substantial average power. We have also developed a pulsed operation mode for these beams with a highly reproducible temporal structure for a range of repetition rate of 1-30 Hz. This development can be extended to short wavelengths, for example to x-rays using a future x-ray FEL oscillator. The OAM operation of such a storage-ring FEL also paves the way for the generation of OAM gamma-ray beams via inverse Compton scattering.

2.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35318848

ABSTRACT

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

3.
Research (Wash D C) ; 2021: 9780760, 2021.
Article in English | MEDLINE | ID: mdl-34870226

ABSTRACT

While information is ubiquitously generated, shared, and analyzed in a modern-day life, there is still some controversy around the ways to assess the amount and quality of information inside a noisy optical channel. A number of theoretical approaches based on, e.g., conditional Shannon entropy and Fisher information have been developed, along with some experimental validations. Some of these approaches are limited to a certain alphabet, while others tend to fall short when considering optical beams with a nontrivial structure, such as Hermite-Gauss, Laguerre-Gauss, and other modes with a nontrivial structure. Here, we propose a new definition of the classical Shannon information via the Wigner distribution function, while respecting the Heisenberg inequality. Following this definition, we calculate the amount of information in Gaussian, Hermite-Gaussian, and Laguerre-Gaussian laser modes in juxtaposition and experimentally validate it by reconstruction of the Wigner distribution function from the intensity distribution of structured laser beams. We experimentally demonstrate the technique that allows to infer field structure of the laser beams in singular optics to assess the amount of contained information. Given the generality, this approach of defining information via analyzing the beam complexity is applicable to laser modes of any topology that can be described by well-behaved functions. Classical Shannon information, defined in this way, is detached from a particular alphabet, i.e., communication scheme, and scales with the structural complexity of the system. Such a synergy between the Wigner distribution function encompassing the information in both real and reciprocal space and information being a measure of disorder can contribute into future coherent detection algorithms and remote sensing.

4.
Sensors (Basel) ; 20(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344596

ABSTRACT

We demonstrate that photoemission properties of p-type GaAs can be altered by surface acoustic waves (SAWs) generated on the GaAs surface due to dynamical piezoelectric fields of SAWs. Multiphysics simulations indicate that charge-carrier recombination is greatly reduced, and electron effective lifetime in p-doped GaAs may increase by a factor of 10× to 20×. It implies a significant increase, by a factor of 2× to 3×, of quantum efficiency (QE) for GaAs photoemission applications, like GaAs photocathodes. Conditions of different SAW wavelengths, swept SAW intensities, and varied incident photon energies were investigated. Essential steps in SAW device fabrication on a GaAs substrate are demonstrated, including deposition of an additional layer of ZnO for piezoelectric effect enhancement, measurements of current-voltage (I-V) characteristics of the SAW device, and ability to survive high-temperature annealing. Results obtained and reported in this study provide the potential and basis for future studies on building SAW-enhanced photocathodes, as well as other GaAs photoelectric applications.

5.
Phys Rev Lett ; 94(21): 212301, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-16090311

ABSTRACT

Higher-order QED effects play an important role in precision measurements of nucleon elastic form factors in electron scattering. Here we introduce a two-photon-exchange QED correction to the parity-violating polarization asymmetry of elastic electron-proton scattering. We calculate this correction in the parton model using the formalism of generalized parton distributions, and demonstrate that it can reach several percent in certain kinematics, becoming comparable in size with existing experimental measurements of strange-quark effects in the proton neutral weak current.

SELECTION OF CITATIONS
SEARCH DETAIL
...