Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 582, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962321

ABSTRACT

Exome sequencing is becoming a routine in health care, because it increases the chance of pinpointing the genetic cause of an individual patient's condition and thus making an accurate diagnosis. It is important for facilities providing genetic services to keep track of changes in the technology of exome capture in order to maximize throughput while reducing cost per sample. In this study, we focused on comparing the newly released exome probe set Agilent SureSelect Human All Exon v8 and the previous probe set v7. In preparation for higher throughput of exome sequencing using the DNBSEQ-G400, we evaluated target design, coverage statistics, and variants across these two different exome capture products. Although the target size of the v8 design has not changed much compared to the v7 design (35.24 Mb vs 35.8 Mb), the v8 probe design allows you to call more of SNVs (+ 3.06%) and indels (+ 8.49%) with the same number of raw reads per sample on the common target regions (34.84 Mb). Our results suggest that the new Agilent v8 probe set for exome sequencing yields better data quality than the current Agilent v7 set.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Exons , High-Throughput Nucleotide Sequencing/methods , Humans , INDEL Mutation , Exome Sequencing
2.
Sci Rep ; 12(1): 609, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022470

ABSTRACT

Human exome sequencing is a classical method used in most medical genetic applications. The leaders in the field are the manufacturers of enrichment kits based on hybridization of cRNA or cDNA biotinylated probes specific for a genomic region of interest. Recently, the platforms manufactured by the Chinese company MGI Tech have become widespread in Europe and Asia. The reliability and quality of the obtained data are already beyond any doubt. However, only a few kits compatible with these sequencers can be used for such specific tasks as exome sequencing. We developed our own solution for library pre-capture pooling and exome enrichment with Agilent probes. In this work, using a set of the standard benchmark samples from the Platinum Genome collection, we demonstrate that the qualitative and quantitative parameters of our protocol which we called "RSMU_exome" exceed those of the MGI Tech kit. Our protocol allows for identifying more SNV and indels, generates fewer PCR duplicates, enables pooling of more samples in a single enrichment procedure, and requires less raw data to obtain results comparable with the MGI Tech's protocol. The cost of our protocol is also lower than that of MGI Tech's solution.


Subject(s)
DNA Probes , Exome Sequencing/standards , Base Composition , Humans , INDEL Mutation , Polymorphism, Single Nucleotide , Exome Sequencing/economics
3.
Front Microbiol ; 12: 628622, 2021.
Article in English | MEDLINE | ID: mdl-33912145

ABSTRACT

Shigella are pathogens originating within the Escherichia lineage but frequently classified as a separate genus. Shigella genomes contain numerous insertion sequences (ISs) that lead to pseudogenisation of affected genes and an increase of non-homologous recombination. Here, we study 414 genomes of E. coli and Shigella strains to assess the contribution of genomic rearrangements to Shigella evolution. We found that Shigella experienced exceptionally high rates of intragenomic rearrangements and had a decreased rate of homologous recombination compared to pathogenic and non-pathogenic E. coli. The high rearrangement rate resulted in independent disruption of syntenic regions and parallel rearrangements in different Shigella lineages. Specifically, we identified two types of chromosomally encoded E3 ubiquitin-protein ligases acquired independently by all Shigella strains that also showed a high level of sequence conservation in the promoter and further in the 5'-intergenic region. In the only available enteroinvasive E. coli (EIEC) strain, which is a pathogenic E. coli with a phenotype intermediate between Shigella and non-pathogenic E. coli, we found a rate of genome rearrangements comparable to those in other E. coli and no functional copies of the two Shigella-specific E3 ubiquitin ligases. These data indicate that the accumulation of ISs influenced many aspects of genome evolution and played an important role in the evolution of intracellular pathogens. Our research demonstrates the power of comparative genomics-based on synteny block composition and an important role of non-coding regions in the evolution of genomic islands.

4.
Mol Microbiol ; 115(2): 255-271, 2021 02.
Article in English | MEDLINE | ID: mdl-32985020

ABSTRACT

The ubiquitous human commensal Escherichia coli has been well investigated through its model representative E. coli K-12. In this work, we initially characterized E. coli Fec10, a recently isolated human commensal strain of phylogroup A/sequence type ST10. Compared to E. coli K-12, the 4.88 Mbp Fec10 genome is characterized by distinct single-nucleotide polymorphisms and acquisition of genomic islands. In addition, E. coli Fec10 possesses a 155.86 kbp IncY plasmid, a composite element based on phage P1. pFec10 harbours multiple cargo genes such as coding for a tetrathionate reductase and its corresponding regulatory two-component system. Among the cargo genes is also the Transmissible Locus of Protein Quality Control (TLPQC), which mediates tolerance to lethal temperatures in bacteria. The disaggregase ClpGGI of TLPQC constitutes a major determinant of the thermotolerance of E. coli Fec10. We confirmed stand-alone disaggregation activity, but observed distinct biochemical characteristics of ClpGGI-Fec10 compared to the nearly identical Pseudomonas aeruginosa ClpGGI-SG17M. Furthermore, we noted a unique contribution of ClpGGI-Fec10 to the exquisite thermotolerance of E. coli Fec10, suggesting functional differences between both disaggregases in vivo. Detection of thermotolerance in 10% of human commensal E. coli isolates hints to the successful establishment of food-borne heat-resistant strains in the human gut.


Subject(s)
Escherichia coli/metabolism , Thermotolerance/genetics , Thermotolerance/physiology , Bacteriophage P1/genetics , Bacteriophages/genetics , Escherichia coli/genetics , Genome, Bacterial , Genomic Islands , Humans , Oxygen Consumption/physiology , Plasmids/genetics , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...