Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(19): 14275-14279, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32960573

ABSTRACT

Preparation of formamides by CO2 hydrogenation requires an efficient catalyst and temperatures around 100 °C or higher, but most catalysts reported so far incorporate rare and toxic precious metals. Five cobalt(II) or nickel(II) complexes with dmpe or PNN (dmpe = 1,2-bis(dimethylphosphino)ethane; PNN = [(2-(di-tert-butylphosphinomethyl)-6-diethylaminomethyl)pyridine) have been evaluated as precatalysts for the hydrogenation of CO2 to prepare formamides from the corresponding secondary amines. The most active catalyst for these reactions was found to be [NiCl2(dmpe)] in DMSO, producing dimethylformamide (DMF) from CO2, H2, and dimethylamine in up to 6300 TON, the highest activity reported for this reaction with an abundant metal-phosphine complex.

2.
Inorg Chem ; 56(12): 7301-7305, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28586216

ABSTRACT

Catalytic hydrogenation of CO2 is an efficient and selective way to prepare formic acid derivatives, but most of the highly active catalysts used for this purpose require precious metals. In this study, in situ abundant-metal complexes have been evaluated as potential catalysts for CO2 hydrogenation to prepare formamides, including N-formylmorpholine, 2-ethylhexylformamide, and dimethylformamide, from the corresponding amines. From these initial screening results, the most active catalysts for these reactions were found to be MX2/dmpe in situ catalysts (M = Fe(II), Ni(II); X = Cl-, CH3CO2-, acac-; dmpe = 1,2-bis(dimethylphosphino)ethane) in DMSO. The optimal reaction conditions were found to be 100-135 °C and a total pressure of 100 bar. Morpholine was formylated with a TON value of up to 18000, which is the highest TON for the hydrogenation of CO2 to formamides using any abundant-metal-phosphine complex. With an appropriate selection of catalyst and reaction conditions, >90-98% conversion of amine to formamide could be achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...