Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nucl Med Biol ; 38(1): 77-92, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21220131

ABSTRACT

INTRODUCTION: Drug resistance to alkylator chemotherapy has been primarily attributed to the DNA repair protein alkylguanine-DNA alkyltransferase (AGT); thus, personalizing chemotherapy could be facilitated if tumor AGT content could be quantified prior to administering chemotherapy. We have been investigating the use of radiolabeled O(6)-benzylguanine (BG) analogues to label and quantify AGT in vivo. BG derivatives containing an azido function were sought to potentially enhance the targeting of these analogues to AGT, which is primarily present in the cell nucleus, either by conjugating them to nuclear localization sequence (NLS) peptides or by pretargeting via bio-orthogonal approaches. METHODS: Two O(6)-(3-iodobenzyl)guanine (IBG) derivatives containing an azido moiety-O(6)-(4-azidohexyloxymethyl-3-iodobenzyl)guanine (AHOMIBG) and O(6)-(4-azido-3-iodobenzyl)guanine (AIBG)--and their tin precursors were synthesized in multiple steps and the tin precursors were converted to radioiodinated AHOMIBG and AIBG, respectively. Both unlabeled and radioiodinated AHOMIBG analogues were conjugated to alkyne-derivatized NLS peptide heptynoyl-PK(3)RKV. The ability of these radioiodinated compounds to bind to AGT was determined by a trichloroacetic acid precipitation assay and gel electrophoresis/phosphor imaging. Labeling of an AGT-AIBG conjugate via Staudinger ligation using the (131)I-labeled phosphine ligand, 2-(diphenylphosphino)phenyl 4-[(131)I]iodobenzoate, also was investigated. RESULTS: [(131)I]AHOMIBG was synthesized in two steps from its tin precursor in 52.2 ± 7.5% (n = 5) radiochemical yield and conjugated to the NLS peptide via click reaction in 50.7 ± 4.9% (n = 6) yield. The protected tin precursor of AIBG was radioiodinated in an average radiochemical yield of 69.6 ± 4.5% (n = 7); deprotection of the intermediate gave [(131)I]AIBG in 17.8 ± 4.2% (n = 9) yield. While both [(131)I]AHOMIBG and its NLS conjugate bound to AGT pure protein, their potency as a substrate for AGT was substantially lower than that of [(125)I]IBG. Uptake of [(131)I]AHOMIBG-NLS conjugate in DAOY medulloblastoma cells was up to eightfold higher than that of [(125)I]IBG; however, the uptake was not changed when the cellular AGT content was first depleted with BG treatment. [(131)I]AIBG was almost equipotent as [(125)I]IBG with respect to binding to pure AGT; however, attempts to radiolabel AGT by treatment with unlabeled AIBG followed by Staudinger ligation using the radiolabeled phosphine ligand, 2-(diphenylphosphino)phenyl 4-[(131)I]iodobenzoate were not successful. CONCLUSION: Although AHOMIBG, and AIBG were synthesized successfully in both unlabeled and radioiodinated forms, the radioiodinated compounds failed to label AGT either after NLS peptide conjugation or via Staundiger ligation. Currently, other bio-orthogonal approaches are being evaluated for labeling AGT by pretargeting.


Subject(s)
Azides/chemistry , Guanine/analogs & derivatives , 3-Iodobenzylguanidine/analogs & derivatives , 3-Iodobenzylguanidine/chemistry , 3-Iodobenzylguanidine/metabolism , Cell Line, Tumor , Guanine/chemistry , Guanine/metabolism , Humans , Iodine Radioisotopes/chemistry , Nuclear Localization Signals/metabolism , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Radiochemistry
2.
Curr Radiopharm ; 3(1): 29-36, 2010.
Article in English | MEDLINE | ID: mdl-21243098

ABSTRACT

Medulloblastoma, the most common pediatric brain tumor, is difficult to treat because conventional therapeutic approaches result in significant toxicity to normal central nervous system tissues, compromising quality of life. Given the fact that medulloblastomas express the somatostatin subtype 2 receptor, [(177)Lu-DOTA(0),Tyr(3)]octreotate ([(177)Lu]DOTA-TATE) could be a potentially useful targeted radiotherapeutic for the treatment of this malignancy. The current study was undertaken to evaluate this possibility in preclinical models of D341 MED human medulloblastoma by comparing the properties of [(177)Lu]DOTA-TATE to those of glucose-[(125)I-Tyr(3)]-octreotate ([(125)I]Gluc-TOCA), a radiopeptide previously shown to target this cell line. In vitro assays indicated that both labeled peptides exhibited similar cell-associated and internalized radioactivity after a 30-min incubation at 37°C; however, at the end of the 4 h incubation period, the internalized radioactivity for [(177)Lu]DOTA-TATE (6.22 " 0.75%) was nearly twice that for [(125)I]Gluc-TOCA (3.16 " 0.27%), with similar differences seen in total cell-associated radioactivity levels. Consistent with the results from the internalization assays, results from paired-label tissue distribution studies in athymic mice with subcutaneous D341 MED medulloblastoma xenografts showed a similar degree of tumor accumulation for [(177)Lu]DOTA-TATE and [(125)I]Gluc-TOCA at early time points but by 24 h, a more than 5-fold advantage was observed for the (177)Lu-labeled peptide. Tumor-to-normal tissue ratios generally were more favorable for [(177)Lu]DOTA-TATE at all time points, due in part to its lower accumulation in normal tissues except kidneys. Taken together, these results suggest that [(177)Lu]DOTA-TATE warrants further investigation as a targeted radiotherapeutic for medulloblastoma treatment.

3.
Nucl Med Biol ; 36(8): 919-29, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19875048

ABSTRACT

INTRODUCTION: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. METHODS: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. RESULTS: The average radiochemical yields for the synthesis of [(125)I]FMIC and [(125)I]DEIBA were 70+/-5% and 47+/-14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. CONCLUSION: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Aldehydes/pharmacokinetics , Leukemia L1210/diagnostic imaging , Leukemia L1210/enzymology , Aldehydes/chemistry , Animals , Drug Delivery Systems/methods , Humans , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacokinetics , K562 Cells , Radionuclide Imaging
4.
Bioconjug Chem ; 18(6): 2122-30, 2007.
Article in English | MEDLINE | ID: mdl-17979223

ABSTRACT

Several neuroendocrine tumors are known to express both the somatostatin receptor subtype 2 (SSTR2) and the norepinephrine transporter (NET), and radiopharmaceuticals directed toward both these targets such as MIBG and octreotide derivatives are routinely used in the clinic. To investigate the possibility of targeting both NET and SSTR2 conjointly, a conjugate of radioiodinated MIBG and octreotate was synthesized. Attempts to synthesize the radioiodinated target compound (MIBG-octreotate; [ (131)I] 12a) from a tin precursor were futile; however, it could be accomplished from a bromo precursor by exchange radioiodination in 3-36% ( n = 10) radiochemical yields. The total uptake of [ (131)I] 12a in SK-N-SH human neuroblastoma cells transfected to express SSTR2 (SK-N-SHsst2) was similar to that for [ (125)I]MIBG at all time points (34.9 +/- 2.4% vs 43.8 +/- 1.2% at 4 h; p < 0.05), while it was substantially lower (5.4 +/- 0.3% vs 35.9 +/- 1.2%) in the SH-SY5Y cell line, a subclone of SK-N-SH line that is known to express SSTR2. The NET blocker desipramine reduced the uptake of [ (131)I] 12a only to a small extent, further suggesting a limited role of NET in its binding and accumulation. Uptake of [ (131)I] 12a in SK-N-SHsst2 cells was 8-10-fold higher ( p < 0.05) than that of [ (125)I]I-Gluc-TOCA, an octreotide analogue, at all time points over a 4 h period and was reduced to about 20% by 10 muM octreotide demonstrating that the uptake of [ (131)I] 12a in this cell line is predominantly mediated by SSTR2. The intracellularly trapped radioactivity in SK-N-SHsst2 cells was substantially higher for [ (131)I] 12a compared to that for [ (125)I]OIBG-octreotate, an isomeric congener of 12a. Because MIBG has more specific NET-mediated uptake than OIBG, this suggests at least a partial role for NET-mediated uptake of [ (131)I] 12a in this cell line. While further refinement in the structure of the conjugate-probably interposition of a flexible and/or cleavable linker between the MIBG and octreotate moieties-may be necessary to make it a substrate/ligand for both NET and SSTR2, this conjugate is demonstrated to be much superior than I-Gluc-TOCA with respect to the uptake in SSTR2-expressing cells.


Subject(s)
3-Iodobenzylguanidine/chemistry , 3-Iodobenzylguanidine/pharmacology , Octreotide/chemistry , Receptors, Somatostatin/metabolism , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Humans , Iodine Radioisotopes/chemistry , Molecular Structure
5.
Bioorg Med Chem ; 15(10): 3430-6, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17387017

ABSTRACT

meta-[(211)At]Astatobenzylguanidine ([(211)At]MABG), an analogue of meta-iodobenzylguanidine (MIBG) labeled with the alpha-emitter (211)At, targets the norepinephrine transporter. Because MABG has been shown to have excellent characteristics in preclinical studies, it has been considered to be a promising targeted radiotherapeutic for the treatment of tumors such as micrometastatic neuroblastoma that overexpress the norepinephrine transporter. To facilitate clinical evaluation of this agent, a convenient method for the high level synthesis of [(211)At]MABG that is adaptable for kit formulation has been developed. A tin precursor anchored to a solid-support was treated with a methanolic solution of (211)At in the presence of a mixture of H(2)O(2)/HOAc as the oxidant; [(211)At]MABG was isolated by simple solid-phase extraction. By using C-18 solid-phase extraction, the radiochemical yield from 25 batches was 63+/-13%; however, loss of radioactivity during evaporation of the methanolic solution was a problem. This difficulty was avoided by use of a cation exchange resin cartridge for isolation of [(211)At]MABG, which resulted in radiochemical yields of 63+/-9% in a shorter duration of synthesis. The radiochemical purity was more than 90% and no chemical impurity has been detected. The final doses were sterile and apyrogenic. These results demonstrate that [(211)At]MABG can be prepared via a kit method at radioactivity levels anticipated for initiation of clinical studies.


Subject(s)
3-Iodobenzylguanidine/chemical synthesis , Astatine/chemistry , Guanidine/analogs & derivatives , Radiopharmaceuticals/chemical synthesis , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Chromatography, Thin Layer , Guanidine/chemical synthesis , Half-Life , Indicators and Reagents , Isotope Labeling , Quality Control , Radioisotopes/chemistry , Spectrophotometry, Ultraviolet , Tin/chemistry
6.
Nucl Med Biol ; 31(7): 909-19, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15464393

ABSTRACT

Monoclonal antibodies such as L8A4, reactive with the epidermal growth factor receptor variant III, internalize after receptor binding resulting in proteolytic degradation by lysosomes. Labeling internalizing mAbs requires the use of methodologies that result in the trapping of labeled catabolites in tumor cells after intracellular processing. Herein we have investigated the potential utility of N-succinimidyl-3-[131I]iodo-4-phosphonomethylbenzoate ([131I]SIPMB), an acylation agent that couples the corresponding negatively charged acid [131I]IPMBA to the protein, for this purpose. Biodistribution studies demonstrated that [131I]IPMBA cleared rapidly from normal tissues and exhibited thyroid levels < or =0.1% injected dose, consistent with a low degree of dehalogenation. Biodistribution experiments in athymic mice bearing subcutaneous D-256 human glioma xenografts were performed to compare L8A4 labeled using [131I]SIPMB to L8A4 labeled with 125I using both the analogous positively charged acylation agent N-succinimidyl-4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) and Iodogen. Tumor uptake of [131I]SIPMB-L8A4 (41.9+/-3.5% ID/g) was nearly threefold that of L8A4 labeled using Iodogen (14.0+/-1.1% ID/g) after 2 days, and tumor to tissue ratios remained uniformly high throughout with [131I]SIPMB-L8A4. Thyroid uptake increased for the Iodogen labeled mAb (3.55+/-0.36 %ID at 5 days) whereas that of [131I]SIPMB labeled mAb remained low (0.21+/-0.04% ID at 5 days). In the second biodistribution, L8A4 labeled using [131I]SIPMB and [125I]SGMIB showed no difference in normal tissue uptake and had nearly identical tumor uptake ([131I]SIPMB, 41.8+/-14.2% ID/g; [125I]SGMIB, 41.6+/-15.8% ID/g, at 4 days). These results suggest that [131I]SIPMB may be a viable acylation agent for the radioiodination of internalizing mAbs.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Benzoates/pharmacokinetics , Benzoates/therapeutic use , Glioma/metabolism , Radioimmunotherapy/methods , Succinimides/pharmacokinetics , Succinimides/therapeutic use , Acylation , Animals , Benzoates/chemistry , Cell Line, Tumor , Feasibility Studies , Female , Glioma/radiotherapy , Isotope Labeling/methods , Male , Metabolic Clearance Rate , Mice , Mice, Inbred BALB C , Mice, Nude , Organ Specificity , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/therapeutic use , Succinimides/chemistry , Tissue Distribution
7.
Nucl Med Commun ; 25(9): 947-55, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15319601

ABSTRACT

BACKGROUND: A fluorine substituted derivative of meta-iodobenzylguanidine (MIBG), 4-fluoro-3-iodobenzylguanidine (FIBG), is retained in SK-N-SH human neuroblastoma cells in vitro to a higher degree than the MIBG. METHOD: To investigate whether the higher retention of FIBG is due to differences in the catabolic degradation of the two tracers, in vitro paired-label studies were performed using SK-N-SH cells. RESULTS: No detectable amount of benzyl amines, benzoic acids or hippuran derivatives, potential catabolites of these tracers, were seen in either case. Even after 48 h, the cell culture supernatants contained exclusively intact I-MIBG and I-FIBG. In contrast, in some cases, HPLC analysis of cell lysates indicated the presence of a very polar compound(s) as the predominant species with smaller quantities of intact tracers. The per cent total radioactivity in the lysate at each time point that was associated with intact I-FIBG was (average [range]) 25.4% [20.3-30.5], 22.5% [19.3-25.6], and 18.8% [14.3-23.3], at 0 h, 24 h and 48 h, respectively. The corresponding values for I-MIBG were 24.3% [21.0-27.5], 19.1% [11.7-26.5] and 17.4% [14.6-20.1]. No significant amount of activity was associated with high molecular weight species for either halobenzylguanidine, indicating that protein binding was not a major factor.


Subject(s)
3-Iodobenzylguanidine/pharmacokinetics , Iodobenzenes/pharmacokinetics , Neuroblastoma/diagnostic imaging , Neuroblastoma/metabolism , Cell Line, Tumor , Humans , Metabolic Clearance Rate , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity
8.
Bioconjug Chem ; 15(2): 402-8, 2004.
Article in English | MEDLINE | ID: mdl-15025538

ABSTRACT

O(6)-Benzylguanine derivatives with suitable radionuclides attached to the benzyl ring are potentially useful in the noninvasive imaging of the DNA repair protein, alkylguanine-DNA alkyltransferase (AGT). Previously, O(6)-3-[(131)I]iodobenzylguanine ([(131)I]IBG) was prepared using a two-step approach; we now report its synthesis in a single step by the radioiododestannylation of O(6)-3-(trimethylstannyl)benzylguanine in 85-95% radiochemical yield. The in vitro specific uptake of [(131)I]IBG in DAOY human medulloblastoma cells, in TE-671 human rhabdomyosarcoma cells and a CHO cell line transfected to express AGT was linear (r(2) = 0.9-1.0) as a function of cell density. After intravenous injection of [(131)I]IBG in athymic mice bearing TE-671 xenografts, tumor uptake was 1.38 +/- 0.34% ID/g at 0.5 h and declined at 2 and 4 h. Preadministration of O(6)-(3-iodobenzyl)guanine (IBG) at 0.5 h increased uptake not only in tumor but also in several normal tissues. Notable exceptions were thyroid (p < 0.05), lung (p <0.05) and stomach. After intratumoral injection of [(131)I]IBG in the same xenograft model, the uptake in tumors that were depleted of AGT by BG treatment (165.8 +/- 27.5% ID/g) was about 60% of that in control mice (272.4 +/- 48.2% ID/g; p < 0.05).


Subject(s)
Guanine/analogs & derivatives , Guanine/chemical synthesis , Iodobenzenes/chemical synthesis , O(6)-Methylguanine-DNA Methyltransferase/chemistry , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , Guanine/metabolism , Humans , Iodine Radioisotopes/metabolism , Iodobenzenes/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Xenograft Model Antitumor Assays/methods
9.
Bioorg Med Chem ; 12(7): 1649-56, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15028258

ABSTRACT

Radioiodinated meta-iodobenzylguanidine (MIBG) is used in the diagnosis and therapy of various neuroendocrine tumors. To investigate whether an additional guanidine function in the structure of MIBG will yield analogues that may potentially enhance tumor-to-target ratios, two derivatives-one with a guanidine moiety and another with a guanidinomethyl group at the 4-position of MIBG-were prepared. In the absence of any uptake-1 inhibiting conditions, the uptake of 4-guanidinomethyl-3-[(131)I]iodobenzylguanidine ([(131)I]GMIBG) by SK-N-SH cells in vitro was 1.7+/-0.1% of input counts, compared to a value of 40.3+/-1.4% for [(125)I[MIBG suggesting that guanidinomethyl group at the 4-position negated the biological properties of MIBG. On the other hand, 4-guanidino-3-[(131)I]iodobenzylguanidine ([(131)I]GIBG) had an uptake (5.6+/-0.3%) that was 12-13% that of [(125)I]MIBG (46.1+/-2.7%), and the ratio of uptake by control over DMI-treated (nonspecific) cultures was higher for [(131)I]GIBG (20.9+/-0.3) than [(125)I]MIBG itself (15.0+/-2.7). The exocytosis of [(131)I]GIBG and [(125)I]MIBG from SK-N-SH cells was similar. The uptake of [(131)I]GIBG in the mouse target tissues, heart and adrenals, as well as in a number of other tissues was about half that of [(125)I]MIBG. These results suggest that substitution of guanidine functions, especially a guanidinomethyl group, in MIBG structure may not be advantageous.


Subject(s)
3-Iodobenzylguanidine/chemical synthesis , 3-Iodobenzylguanidine/pharmacokinetics , Guanidines/chemistry , 3-Iodobenzylguanidine/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Iodine Radioisotopes , Mice , Molecular Structure , Tissue Distribution
10.
Clin Cancer Res ; 9(5): 1868-76, 2003 May.
Article in English | MEDLINE | ID: mdl-12738745

ABSTRACT

PURPOSE: The objective of this study was to determine the feasibility of exploiting the overexpression of somatostatin subtype-2 receptors (sstr(2)) on human medulloblastoma cells to develop targeted radiodiagnostics and radiotherapeutics for this disease. EXPERIMENTAL DESIGN: The following radioiodinated peptides were prepared using chloramine-T and evaluated: [(131)I-Tyr(3)]octreotide ([(131)I]TOC), [(131)I-Tyr(3)]octreotate ([(131)I]TOCA), involving substitution of Thr(ol)(8) in TOC with Thr(8), and glucose-[(131)I-Tyr(3)]octreotide ([(131)I]Gluc-TOC) and glucose-[(131)I-Tyr(3)]octreotate ([(131)I]Gluc-TOCA), prepared by conjugation of glucose to the peptide NH(2) terminus. Specific internalization of the peptides by sstr(2)-expressing AR42J rat pancreatic carcinoma cells in vitro was evaluated in paired-label assays. The tissue distribution of i.v. administered [(131)I]TOC, [(131)I]TOCA, [(131)I]Gluc-TOC, and [(131)I]Gluc-TOCA was evaluated in athymic mice bearing s.c. D341 Med human medulloblastoma xenografts. RESULTS: Compared with [(125)I]TOC, internalized radioiodine levels were higher for the other three peptides. For example, internalized counts were 1.9 +/- 0.2, 2.0 +/- 0.3, and 5.7 +/- 1.9 times higher for [(131)I]Gluc-TOC, [(131)I]TOCA, and [(131)I]Gluc-TOCA after a 3-h incubation, respectively, demonstrating that carbohydration and COOH-terminus modification significantly improved the retention of radioiodine activity in sstr(2)-expressing tumor cells. COOH-terminus modification significantly increased (131)I localization in D341 Med medulloblastoma xenografts [[(131)I]TOCA, 8.1 +/- 2.2% of injected dose/g (% ID/g); [(131)I]TOC, 3.9 +/- 0.5% ID/g at 1 h], whereas carbohydration of the NH(2) terminus resulted in even higher gains in tumor accumulation ([(131)I]Gluc-TOC, 11.1 +/- 1.8% ID/g; [(131)I]Gluc-TOCA, 21.4 +/- 7.3% ID/g). In addition, the three modified peptides exhibited liver activity levels that were less than half those of [(131)I]TOC. Uptake of the two glucose-peptide conjugates in this human medulloblastoma xenograft was blocked by coinjection of 100 micro g of octreotide, demonstrating that it was receptor-specific. Tumor:normal tissue uptake ratios for [(131)I]Gluc-TOCA generally were higher that those for [(131)I]Gluc-TOC. At 1 h, tumor:normal tissue ratios for [(131)I]Gluc-TOCA were 29:1, 15:1, 8:1, 8:1, 240:1, and 82:1 for blood, liver, kidney, spleen, brain, and muscle, respectively. CONCLUSIONS: Our findings suggest that additional investigation of radiolabeled Gluc-TOCA analogues for the imaging and targeted radiotherapy of medulloblastoma is warranted.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacokinetics , Cerebellar Neoplasms/metabolism , Iodine Radioisotopes/pharmacokinetics , Medulloblastoma/metabolism , Octreotide/analogs & derivatives , Octreotide/pharmacokinetics , Animals , Cerebellar Neoplasms/radiotherapy , Drug Delivery Systems , Humans , Medulloblastoma/radiotherapy , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Pancreatic Neoplasms/metabolism , Rats , Receptors, Somatostatin/metabolism , Tissue Distribution , Tomography, Emission-Computed/methods , Transplantation, Heterologous , Tumor Cells, Cultured
11.
Nucl Med Biol ; 30(4): 351-9, 2003 May.
Article in English | MEDLINE | ID: mdl-12767391

ABSTRACT

The objective of this study was to develop a method for labeling internalizing monoclonal antibodies (mAbs) such as those reactive to the anti-epidermal growth factor receptor variant III (EGFRvIII) with the alpha-particle emitting radionuclide (211)At. Based on previous work utilizing the guanidine-containing acylation agent, N-succinimidyl 4-guanidinomethyl-3-[(131)I]iodobenzoate ([(131)I]SGMIB), we have now investigated the potential utility of its astato analogue for labeling the anti-EGFRvIII mAb L8A4. N-succinimidyl 3-[(211)At]astato-4-guanidinomethylbenzoate ([(211)At]SAGMB) in its Boc-protected form was prepared from a tin precursor in 61.7 +/- 13.1% radiochemical yield, in situ deprotected to [(211)At]SAGMB, which was coupled to L8A4 in 36.1 +/- 1.9% yield. Paired-label internalization assays demonstrated that tumor cell retention of radioactivity for L8A4 labeled using [(211)At]SAGMB was almost identical to L8A4 labeled using [(131)I]SGMIB, and 3-4-fold higher than for mAb radioiodinated using Iodogen. Paired-label biodistribution of L8A4 labeled using [(211)At]SAGMB and [(131)I]SGMIB in athymic mice hosting U87MGdeltaEGFR xenografts resulted in identical uptake of both (211)At and (131)I in tumor tissues over 24 h. Although higher levels of (211)At compared with (131)I were sometimes seen in tissues known to sequester free astatide, these (211)At/(131)I uptake ratios were considerably lower than those seen with other labeling methods. These results suggest that [(211)At]SAGMB may be a useful acylation agent for labeling internalizing mAbs with (211)At.


Subject(s)
Antibodies, Monoclonal/radiation effects , Astatine/pharmacology , Benzoates/chemical synthesis , ErbB Receptors/radiation effects , Guanidine/analogs & derivatives , Guanidine/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Acylation/radiation effects , Animals , Benzoates/pharmacokinetics , Benzoates/pharmacology , Guanidine/pharmacokinetics , Guanidine/pharmacology , Mice , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Tissue Distribution
12.
Bioconjug Chem ; 14(2): 331-41, 2003.
Article in English | MEDLINE | ID: mdl-12643743

ABSTRACT

An important criterion in design of acylation agents for the radioiodination of internalizing monoclonal antibodies (mAbs) is to maximize the retention of radioiodine in the tumor following mAb intracellular processing. We have previously shown that labeling methods that generate positively charged catabolites have enhanced tumor retention. Herein we have extended this strategy to investigate the potential utility of labeling internalizing mAbs with an acylation agent that yielded labeled catabolites that would be negatively charged at lysosomal pH. The negatively charged acylation agent, N-succinimidyl 3-[(131)I]iodo-4-phosphonomethylbenzoate ([(131)I]SIPMB), was prepared from its tin precursor, N-succinimidyl 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoate (tBu-SPMTB), in 40% radiochemical yield. The free acid, 3-[(131)I]iodo-4-phosphonomethylbenzoic acid ([(131)I]IPMBA), was also prepared from the corresponding precursor, 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoic acid (tBu-PMTBA), in 80% radiochemical yield. The rapidly internalizing mAb L8A4 was conjugated to [(131)I]SIPMB in 25-40% yield with preservation of its immunoreactivity. Internalization and processing in the U87DeltaEGFR glioma cell line was studied in a paired label format with L8A4 labeled with (125)I using the Iodogen method. Retention of initially bound radioactivity in these cells at 24 h from [(131)I]SIPMB-labeled mAb was approximately 6-fold higher than that for directly labeled mAb. Catabolite analysis demonstrated that this difference reflected an order of magnitude higher retention of low molecular weight species in these cells. The [(131)I]SIPMB-L8A4 conjugate was intact over the first 2 h; thereafter, lysine-[(131)I]SIPMB was the predominant catabolite. In contrast, L8A4 labeled using Iodogen rapidly gave rise to mono-[(125)I]iodotyrosine within 2 h, which then cleared rapidly from the cells. These results suggest that SIPMB could be a potent candidate for labeling internalizing mAbs and warrant further study.


Subject(s)
Antibodies, Monoclonal/chemistry , Benzoates/chemistry , Isotope Labeling/methods , Peptides/chemistry , Succinimides/chemistry , Acylation , Chromatography, High Pressure Liquid , Indicators and Reagents , Iodine Radioisotopes/chemistry , Tumor Cells, Cultured
13.
Nucl Med Biol ; 29(1): 1-11, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11786270

ABSTRACT

Monoclonal antibodies (mAbs) such as the tumor-specific anti-epidermal growth factor receptor variant III (EGFRvIII) that are internalized and degraded after cell binding necessitate the use of radioiodination methods that minimize the loss of radioactivity from the tumor cell after intracellular processing. The purpose of the current study was to determine the suitability of N-succinimidyl 4-guanidinomethyl-3-iodobenzoate (SGMIB) for labeling this internalizing mAb. A series of paired-label biodistribution experiments were performed in athymic mice bearing subcutaneous, EGFRvIII-expressing, D-256 human glioma and U87 Delta EGFR xenografts. The tissue distribution of radioiodine activity following injection of anti-EGFRvIII mAb L8A4 labeled using N-succinimidyl 4-guanidinomethyl-3-iodobenzoate (SGMIB) were compared to those for mAb labeled using Iodogen, N-succinimidyl 3-iodo-5-pyridinecarboxylate (SIPC) as well as the Boc-protected precursor of SGMIB. Tumor uptake of radioiodine activity for mAb labeled via SGMIB was significantly higher than co-administered L8A4 radioiodinated by other methods. For example, 3 days after injection, D-256 tumor uptake of L8A4 labeled via SGMIB was 20.4 +/- 4.6% ID/g compared with 11.7 +/- 5.5% ID/g when the SIPC method was used. Thyroid uptake for L8A4 (SGMIB) was up to 36 times lower than L8A4 (Iodogen) and less than 0.35% in all experiments, indicating a low degree of deiodination in vivo. These results suggest that SGMIB may be a useful reagent for the radioiodination of this internalizing anti-EGFRvIII mAb.


Subject(s)
ErbB Receptors/metabolism , Urea/analogs & derivatives , Xanthine/pharmacokinetics , Animals , Glioma/metabolism , Humans , Mice , Mice, Inbred BALB C , Tissue Distribution , Transplantation, Heterologous , Xanthines
SELECTION OF CITATIONS
SEARCH DETAIL
...