Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Clin Chem ; 70(1): 250-260, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37624932

ABSTRACT

BACKGROUND: Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS: We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS: 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS: Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.


Subject(s)
Brain Neoplasms , Cell-Free Nucleic Acids , Nanopore Sequencing , Humans , Cell-Free Nucleic Acids/genetics , DNA Copy Number Variations , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Mutation
3.
Nat Commun ; 14(1): 7717, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001143

ABSTRACT

Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.


Subject(s)
Glioma , Neuroblastoma , Humans , Child , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Disease Models, Animal , Glioma/genetics , Mutation , Gene Amplification
4.
Biomolecules ; 10(9)2020 09 10.
Article in English | MEDLINE | ID: mdl-32927777

ABSTRACT

The human-relevance of an in vitro model is dependent on two main factors-(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


Subject(s)
Cell Lineage/physiology , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cells/physiology , Models, Biological , Organoids/physiology , Tissue Engineering/methods , Bioartificial Organs , Biomimetic Materials/therapeutic use , Bioprinting/methods , Cell Culture Techniques , Cell Differentiation , Humans , Lab-On-A-Chip Devices , Mesenchymal Stem Cells/cytology , Organoids/cytology , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...