Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 205: 111156, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38157793

ABSTRACT

Radioactive particle tracking is a nuclear technique that tracks a sealed radioactive particle inside a volume through a mathematical location algorithm, which is widely applied in many fields such as chemical and civil engineering in hydrodynamics flows. It is possible to reconstruct the trajectory of the radioactive particle using a traditional mathematical algorithm or artificial intelligence methods. In this paper, the traditional algorithm is based on solving a minimization problem between the simulated events and a calibration dataset, and it was written using C++ language. The artificial intelligence method is represented by a deep neural network, in which hyperparameters were defined using a Python optimization library called Optuna. This paper aims to compare the potentiality of both methods to evaluate the accuracy of the radioactive particle tracking technique. This study proposes a simplified model of a concrete mixer, six NaI(Tl) detectors, and a137Cs sealed radioactive particle. The simulated measurement geometry and the dataset (3615 patterns) were developed using the MCNPX code, which is a mathematical code based on the Monte Carlo Method. The results show a mean absolute percentage error (MAPE) of 20.81%, 10.33%, and 16.84% for x, y and z coordinates, respectively, for the traditional algorithm. For the deep neural network, MAPE is 6.87%, 2.70%, and 22.79% respectively for x, y and z coordinates. In addition, an investigation is carried out to analyze whether the size of the calibration dataset influences the performance of both methods.

2.
Appl Radiat Isot ; 164: 109226, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32819497

ABSTRACT

Knowing the volume fraction in a multiphase flow is of fundamental importance in predicting the performance of many systems and processes, it has been possible to model an experimental apparatus for volume fraction studies using Monte Carlo codes. Artificial neural networks have been applied for the recognition of the pulse height distributions in order to obtain the prediction of the volume fractions of the flow. In this sense, some researchers are unsure of which Monte Carlo code to use for volume fractions studies in two-phase flows. This work aims to model a biphasic flow (water and air) experiment in a stratified regime in two Monte Carlo-based codes (MCNP-X and Gate/Geant4), and to verify which one has the greatest benefits for researchers, focusing on volume fractions studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...