Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 30(2): 293-305, 2022.
Article in English | MEDLINE | ID: mdl-34974448

ABSTRACT

Shielding glass materials doped with heavy metal oxides show an improvement in the effectiveness of the materials used in radiation shielding. In this work, the photon shielding parameters of six tellurite glass systems doped with several metal oxides namely, 70TeO2-10P2O5- 10ZnO- 5.0PbF2- 0.0024Er2O3- 5.0X (where X represents different doped metail oxides namely, Nb2O5, TiO2, WO3, PbO, Bi2O3, and CdO) in a broad energy spectrum, ranging from 0.015 MeV to 15 MeV, were evaluated. The shielding parameters were calculated using the online software Phy-X/PSD. The highest linear and mass attenuation coefficients recorded were obtaibed from the samples containing bismuth oxide (Bi2O3), and the lowest half-value layer and mean free path were recorded among the other samples. Furthermore, the shielding effectiveness of tellurite glass systems was compared with commercial shielding materials (RS-369, RS-253 G18, chromite, ferrite, magnetite, and barite). The optical parameters viz, dispersion energy, single-oscillator energy, molar refraction, electronic polarizability, non-linear refractive indices, n2, and third-order susceptibility were measured and reported at a different wavelength. Bi2O3 has a strong effect on enhancing the optical and shielding properties. The outcome of this study suggests the potential of using the proposed glass samples as radiation-shielding materials for a broad range of imaging and therapeutic applications.


Subject(s)
Glass , Radiation Protection , Oxides , Photons , Tellurium
2.
J Xray Sci Technol ; 29(2): 331-345, 2021.
Article in English | MEDLINE | ID: mdl-33579888

ABSTRACT

BACKGROUND: Metal oxide glass composites have attracted huge interest as promising shielding materials to replace toxic, heavy, and costly conventional shielding materials. OBJECTIVE: In this work, we evaluate shielding effectiveness of four novel tellurite-based glasses samples doped with oxide metals (namely, A, B, C, and D, which are 75TeO2- 10P2O5- 10ZnO- 5PbF2- 0.24Er2O3 ; 70TeO2- 10P2O5- 10ZnO- 5PbF2 -5MgO- 0.24Er2O3; 70TeO2- 10P2O5- 10ZnO- 5PbF2- 5BaO- 0.24Er2O3 ; and 70TeO2- 10P2O5-10ZnO- 5PbF2- 5SrO; respectively) by assessing them through a wide range of ionizing radiation energies (0.015-15 MeV). METHODS: The radiation-shielding parameters including mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half-value layer (HVL), mean free path, (MFP), effective atomic number (Zeff), effective electron number (Neff), and the transmission factor are computed in the selected range of ionizing radiation energies. Furthermore, the proposed samples were compared with the most common shielding glass materials. The optical parameters viz oscillator, dispersion energy, nonlinear refractive indices, molar, and electronic polarizability of these transparent glasses are reported at different wavelengths. RESULTS: The results show that the proposed samples have considerable effectiveness as transparent shielding glass materials at various ionizing radiation energies. They can be employed for effective radiation-protection outcomes. Sample C demonstrated slightly better shielding properties than the other samples with differences of 1.33%, 4.6%, and 4.2% for samples A, B, and D, respectively. A similar trend is observed regarding the mass attenuation coefficients. Nevertheless, sample B shows better optical properties than the other prepared glass samples. CONCLUSIONS: Our findings indicate that the proposed novel glass samples have good shielding properties and optical characteristics, which can pave the way for their utilization as transparent radiation-shielding materials in medical and industrial applications.


Subject(s)
Radiation Protection , Gamma Rays , Oxides , Radiography , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...