Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Magnes Res ; 34(3): 130-139, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34859788

ABSTRACT

Magnesium (Mg) supplementation was shown to improve metabolic syndrome (MetS) parameters in hypomagnesemic patients. The current study evaluated the role of Mg in normomagnesemic individuals with MetS. Patients were randomly assigned to 400 mg Mg as Mg citrate or placebo daily for 12 weeks. Blood pressure (BP), HbA1c, plasma concentrations of glucose, Mg and Ca, blood-ionized Mg, serum concentrations of cholesterol, triglycerides, vitamin D, creatinine, interleukin-6, and C-reactive protein were measured at baseline and after 12 weeks. Data were obtained from n = 13 in the Mg supplemented and n = 11 in the placebo group. Mg supplementation led to a significant increase in plasma Mg concentration (0.78 ± 0.07 mmol/L to 0.83 ± 0.07 mmol/L) and a decrease in systolic and diastolic BP (baseline: 145 ± 10/85 ± 3 mmHg; 12 weeks: 121 ± 5/79 ± 3 mmHg). HbA1c decreased significantly in the Mg group (6.43 ± 0.64% to 6.15 ± 0.55%), and the difference in change between placebo and Mg group was significant. Serum vitamin D levels significantly increased only in the Mg group. In normomagnesemic individuals with MetS, oral Mg citrate supplementation reduced HbA1c and BP.


Subject(s)
Metabolic Syndrome , Blood Glucose , Blood Pressure , Citric Acid , Dietary Supplements , Double-Blind Method , Glycated Hemoglobin/analysis , Humans , Metabolic Syndrome/drug therapy , Organometallic Compounds , Pilot Projects
2.
J Med Chem ; 64(10): 6827-6837, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33970620

ABSTRACT

Misfolding of the neuronal protein α-synuclein (αSyn) into amyloid fibrils is involved in the development of Parkinson's disease (PD), and inhibition of this process is considered to be a promising therapeutic approach. In this work, we engineered protein inhibitors that bind to fibrils with higher affinity than the monomeric αSyn. They were developed based on the recent structural data of the αSyn fibrils and were shown to prevent fibril elongation upon binding to fibril ends. These inhibitors are highly selective to the misfolded αSyn, nontoxic, and active in cytosol in small concentrations. The best-performing inhibitor shows IC50 ∼10 nM in a cell-based assay, which corresponds to the ∼1:60 molar ratio to αSyn. It can suppress the formation of αSyn aggregates in cells that can be potentially used to slow down the spreading of the pathological aggregates from cell to cell during the course of the PD.


Subject(s)
Amyloid/metabolism , Drug Design , Peptides/chemistry , alpha-Synuclein/antagonists & inhibitors , Amino Acid Sequence , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Kinetics , Microscopy, Fluorescence , Parkinson Disease/metabolism , Parkinson Disease/pathology , Peptides/metabolism , Protein Aggregates , Protein Binding , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
3.
J Mol Biol ; 432(4): 967-977, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31809698

ABSTRACT

BACKGROUND: Misfolding of the neuronal protein α-synuclein into amyloid fibrils is a pathological hallmark of Parkinson's disease, a neurodegenerative disorder that has no cure. Inhibition of the fibril growth is considered a promising therapeutic approach. However, the majority of the existing inhibitors are either unspecific or work at high micromolar concentrations. Earlier, we created a protein-based inhibitor of α-synuclein fibril growth that consists of an α-synuclein moiety and a bulky group. It specifically binds to α-synuclein fibril ends and blocks them by creating steric hindrance to subsequent monomer binding. RESULTS: In this work, we prepared a series of inhibitors with modified α-synuclein moieties and bulky groups of different structure, size, and position. We studied the structure-activity relationship of these inhibitors and optimized them by improving affinity to the fibril end and blocking efficiency. The inhibitors were tested in a Thioflavin T-based kinetic assay, and their affinity to the fibril ends was measured by fluorescence anisotropy. We showed that decrease in electrostatic repulsion between inhibitor and fibril end improved the inhibitor efficiency. Inhibitors with rigid ß-sheet-rich bulky groups bind to fibril ends stronger than monomeric α-synuclein and therefore have a high inhibition efficiency, showing a linear correlation between Kd and IC50. SIGNIFICANCE: We determined which properties of inhibitor molecules are the most important for good performance and found that the inhibitor affinity to the fibril end is a key feature that determines its inhibition efficiency. Applying this knowledge, we improved existing inhibitors and reached IC50 value of 300 nM.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Benzothiazoles/chemistry , Benzothiazoles/metabolism , Fluorescence Polarization , Humans , Kinetics , Protein Aggregates , Protein Binding , Structure-Activity Relationship
4.
J Med Chem ; 62(22): 10342-10351, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31625739

ABSTRACT

Aggregation of the neuronal protein α-synuclein into amyloid fibrils plays a central role in the development of Parkinson's disease. Growth of fibrils can be suppressed by blocking fibril ends from their interaction with monomeric proteins. In this work, we constructed inhibitors that bind to the ends of α-synuclein amyloid fibrils with very high affinity. They are based on synthetic α-synuclein dimers and interact with fibrils via two monomeric subunits adopting conformation that efficiently blocks fibril elongation. By tuning the charge of dimers, we further enhanced the binding affinity and prepared a construct that inhibits fibril elongation at nanomolar concentration (IC50 ≈ 20 nM). To the best of our knowledge, it is the most efficient inhibitor of α-synuclein fibrillization.


Subject(s)
Amyloid/antagonists & inhibitors , Central Nervous System Agents/chemistry , Central Nervous System Agents/pharmacology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/metabolism , Amyloid/chemistry , Amyloid/metabolism , Circular Dichroism , Disulfides/chemistry , Humans , Protein Multimerization , Structure-Activity Relationship , alpha-Synuclein/genetics
5.
Biochim Biophys Acta Proteins Proteom ; 1867(7-8): 701-709, 2019.
Article in English | MEDLINE | ID: mdl-31096048

ABSTRACT

BACKGROUND: Aggregation of the neuronal protein α-synuclein into amyloid fibrils is a hallmark of Parkinson's disease. The propensity of α-synuclein to aggregate increases with the protein concentration. For the development of efficient inhibitors of α-synuclein aggregation, it is important to know the critical concentration of aggregation (the concentration of monomeric protein, below which the protein does not aggregate). METHODS: We performed in vitro aggregation studies of α-synuclein at low concentrations (0.11-20 µM). Aggregation kinetics was measured by ThT fluorescence. Obtained aggregates were characterized using CD-spectroscopy, fluorescent spectroscopy, dynamic light scattering and AFM imaging. RESULTS: Monomeric α-synuclein at concentrations 0.45 µM and above was able to bind to fibril ends resulting in fibril growth. At the protein concentrations below 0.4 µM, monomers did not fibrillize, and fibrils disaggregated. In the absence of seeds, fibrils were formed only at monomer concentrations higher than 10 µM. At low micromolar concentrations, we observed formation of prefibrillar amyloid aggregates, which are able to induce fibril formation in α-synuclein solutions of high concentrations. CONCLUSIONS: The critical concentration of α-synuclein fibril growth is ~0.4 µM. Prefibrillar amyloid aggregates appear at concentrations between 0.45 and 3 µM and are an intermediate state between monomers and fibrils. Although morphologically different from fibrils, prefibrillar aggregates have similar properties to those of fibrils. GENERAL SIGNIFICANCE: We determined the critical concentration of α-synuclein fibril growth. We showed that fibrils can grow at much lower monomer concentrations than that required for de novo fibril formation. We characterized a prefibrillar intermediate species formed upon aggregation of α-synuclein at low micromolar concentration.


Subject(s)
Amyloid/chemistry , Protein Aggregates , alpha-Synuclein/chemistry , Amyloid/metabolism , Circular Dichroism , Humans , Spectrometry, Fluorescence , alpha-Synuclein/metabolism
6.
Angew Chem Int Ed Engl ; 57(20): 5690-5694, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29575453

ABSTRACT

Misfolding of the protein α-synuclein (αSyn) into amyloid fibrils plays a central role in the development of Parkinson's disease. Most approaches for the inhibition of αSyn fibril formation are based on stabilizing the native monomeric form of the protein or destabilizing the fibrillized misfolded form. They require high concentrations of inhibitor and therefore cannot be easily used for therapies. In this work, we designed an inhibitor (Inh-ß) that selectively binds the growing ends of αSyn fibrils and creates steric hindrance for the binding of monomeric αSyn. This approach permits the inhibition of fibril formation at Inh-ß concentrations (IC50 =850 nm) much lower than the concentration of monomeric αSyn. We studied its kinetic mechanism in vitro and identified the reactions that limit inhibition efficiency. It is shown that blocking of αSyn fibril ends is an effective approach to inhibiting fibril growth and provides insights for the development of effective inhibitors of αSyn aggregation.


Subject(s)
Amyloid/antagonists & inhibitors , alpha-Synuclein/antagonists & inhibitors , Amyloid/metabolism , Humans , alpha-Synuclein/metabolism
7.
Biophys J ; 113(10): 2182-2191, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28939194

ABSTRACT

Aggregation of neuronal protein α-synuclein leads to the formation of amyloid fibrils, which are associated with the development of Parkinson's disease. The mechanism of α-synuclein pathology is not fully understood and is a subject of active research in the field. To tackle this problem, the fusions of fluorescent proteins to α-synuclein C-terminus are often used in cellular and animal studies. The effects induced by such α-synuclein sequence extension on α-synuclein aggregation propensity are, however, not systematically examined despite the evidence that the negatively charged C-terminus plays a critical role in the regulation of α-synuclein aggregation. In this work, we investigated how the charge and length variations of the C-terminus affect the aggregation propensity of α-synuclein. To address these questions, we prepared mutants of α-synuclein carrying additional moieties of different charge and length at the protein C-terminus. We determined the rates of two different aggregation stages (primary nucleation and elongation) based on a thioflavin T kinetic assay. We observed that all mutants bearing neutrally charged moieties of different length fibrilized slower than wild-type α-synuclein. The primary nucleation and elongation rates strongly decreased with increase of the C-terminal extension length. Meanwhile, charge variation of the C-terminus significantly changed the rate of α-synuclein nucleation, but did not markedly affect the rate of fibril elongation. Our data demonstrate that both the charge and length of the C-terminus play an important role at the stage of initial fibril formation, but the stage of fibril elongation is affected mainly by the length of C-terminal extension. In addition, our results suggest that there are at least two steps of incorporation of α-synuclein monomers into the amyloid fibril: namely, the initial monomer binding to the fibril end (charge-dependent, relatively fast), and the subsequent conformational change of the protein (charge-independent, relatively slow, and thus the rate-limiting step).


Subject(s)
Protein Aggregates , alpha-Synuclein/chemistry , Dose-Response Relationship, Drug , Kinetics , Mutation , Protein Aggregates/drug effects , Salts/pharmacology , alpha-Synuclein/genetics
8.
Biochim Biophys Acta Biomembr ; 1859(5): 852-859, 2017 May.
Article in English | MEDLINE | ID: mdl-28118959

ABSTRACT

Solvatochromic probes are suitable tools for quantitative characterization of protein-membrane interactions. Based on diverse fluorophores these probes have different fluorescent properties and therefore demonstrate different responses when applied for sensing the interactions of biomolecules. Surprisingly, to the best of our knowledge, no systematic comparison of the sensitivities of solvatochromic dyes for monitoring protein-membrane interactions was described. Hence, a rational choice of an optimal environmentally sensitive probe for such experiments is usually not a straightforward task. In this work we developed a series of thiol-reactive fluorescent probes based on the fluorophores with high sensitivity to their environment and compared them with two widely used DNS and DMN probes. We investigated the responses of these probes to the interaction of probe-labeled presynaptic protein α-synuclein with lipid membranes. We observed that newly synthesized probes based on fluorene and chromone dyes, which combine the strongest brightness and significant changes of fluorescence intensity, demonstrated the highest sensitivity to interaction of α-synuclein with lipid membranes. They are especially beneficial for sensing in scattering media such as solutions of lipid vesicles. We show that the described probes permit quantitative measurements of α-synuclein binding to lipid membranes at low nanomolar concentrations. We developed a detailed protocol for measuring Kd and binding stoichiometry for interaction of soluble peripheral proteins with membranes based on the response of the environmentally sensitive fluorescent probes. We applied this protocol for quantification of the affinity of α-synuclein to anionic membranes and found that it is substantially higher than it was earlier reported.


Subject(s)
Fluorescent Dyes , Lipid Bilayers/chemistry , alpha-Synuclein/chemistry , Light , Lipid Bilayers/metabolism , Protein Binding , Scattering, Radiation , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...