Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 23(12): 1255-1270, 2021 12.
Article in English | MEDLINE | ID: mdl-34876687

ABSTRACT

Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.


Subject(s)
ARNTL Transcription Factors/genetics , CLOCK Proteins/metabolism , Chaperone-Mediated Autophagy/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Aging/physiology , Animals , Lysosomes/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Photoperiod , Proteome/genetics , Proteostasis/physiology , Sleep Deprivation/physiopathology , Transcription, Genetic/genetics
2.
mBio ; 13(1): e0043921, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35100871

ABSTRACT

Pyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is active against Mycobacterium tuberculosis only at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. We found that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, exposure to peptidoglycan synthesis inhibitors, such as beta-lactams and d-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveal new avenues for enhancing potency of this important drug through targeting activation of the cell envelope stress response. IMPORTANCE For decades, pyrazinamide has served as a cornerstone of tuberculosis therapy. Unlike any other antitubercular drug, pyrazinamide requires an acidic environment to exert its action. Despite its importance, the driver of this conditional susceptibility has remained unknown. In this study, a genome-wide approach revealed that pyrazinamide action is governed by the cell envelope stress response. This observation was validated by orthologous approaches that demonstrate that a central player of this response, SigE, is both necessary and sufficient for potentiation of pyrazinamide action. Moreover, constitutive activation of this response through deletion of the anti-sigma factor gene rseA or exposure of bacilli to drugs that target the cell wall was found to potently drive pyrazinamide susceptibility independent of environmental pH. These findings force a paradigm shift in our understanding of pyrazinamide action and open new avenues for improving diagnostic and therapeutic tools for tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Pyrazinamide/therapeutic use , Mycobacterium tuberculosis/genetics , Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Tuberculosis/microbiology , Mutation , Microbial Sensitivity Tests
3.
Front Immunol ; 10: 1738, 2019.
Article in English | MEDLINE | ID: mdl-31404142

ABSTRACT

Akt is a serine/threonine protein kinase that plays a major role in regulating multiple cellular processes. While the isoforms Akt1 and Akt2 are involved in apoptosis and insulin signaling, respectively, the role for Akt3 remains uncertain. Akt3 is predominantly expressed in the brain, and total deletion of Akt3 in mice results in a reduction in brain size and neurodegeneration following injury. Previously, we found that Akt3-/- mice have a significantly worse clinical course during myelin-oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model in which autoreactive immune cells enter the CNS, resulting in inflammation, demyelination, and axonal injury. Spinal cords of Akt3-/- mice are severely demyelinated and have increased inflammation compared to WT, suggesting a neuroprotective role for Akt3 during EAE. To specifically address the role of Akt3 in neuroinflammation and maintaining neuronal integrity, we used several mouse strains with different manipulations to Akt3. During EAE, Akt3 Nmf350 mice (with enhanced Akt3 kinase activity) had lower clinical scores, a lag in disease onset, a delay in the influx of inflammatory cells into the CNS, and less axonal damage compared to WT mice. A significant increased efficiency of differentiation toward FOXP3 expressing iTregs was also observed in Akt3 Nmf350 mice relative to WT. Mice with a conditional deletion of Akt3 in CD4+ T-cells had an earlier onset of EAE symptoms, increased inflammation in the spinal cord and brain, and had fewer FOXP3+ cells and FOXP3 mRNA expression. No difference in EAE outcome was observed when Akt3 expression was deleted in neurons (Syn1-CKO). These results indicate that Akt3 signaling in T-cells and not neurons is necessary for maintaining CNS integrity during an inflammatory demyelinating disease.


Subject(s)
Demyelinating Diseases/etiology , Disease Susceptibility , Proto-Oncogene Proteins c-akt/genetics , Animals , Biomarkers , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Fluorescent Antibody Technique , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Immunohistochemistry , Immunophenotyping , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...