Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 312(Pt 1): 137143, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368529

ABSTRACT

There is a growing concern about glyphosate's behavior in the environment. Herbicide behavior in soils greatly depends on adsorption-desorption phenomena, which have shown great variability in soils, although the reversibility of this process has been less examined. The adsorption-desorption behavior of glyphosate was measured on representative soil profiles of the northeast region of Argentinean Pampas, a semi-arid crop cultivating region. Two soil profiles samples (P1 and P2, both Entic Haplustoll) were collected and segmented into depth increments of 0-10, 10-20, 20-40, 40-60, 60-80, and 80-100 cm. Batch adsorption/48 h-desorption isotherms were performed in a controlled setup. Soil samples had a high sand content (77-92%), and a low content of clay (<3%), but markedly differing in the available P content, especially in the upper layers of soil profiles (0-40 cm, P1 range 133-170 ppm; P2 range 7-43 ppm). Adsorption-desorption isotherms showed a similar range of variation, between 150 and 1400 L kg -1for KFads and 450-1400 L kg -1for KFdes, without appreciable evidence of hysteresis (0.95 ± 0.05). Sorption capacity parameters showed a distinct behavior with depth, P1 exhibiting a U-shape with minimum values at intermediate depths (20-60 cm), while P2 decreases sharply between 0 and 40 cm. General linear models considering the specific surface area (SSA) of each sample and the spatial correlation structure for soil profiles showed a main positive association of KFads and KFdes with the soil organic matter, together with a positive association with iron content (KFads), and a negative association of KFdes with available P content. These results indicate high adsorption extents and sorption reversibility of glyphosate to sandy loam soils of the region, which implies the potential for the herbicide to be available for leaching or degradation under a scenario of intensive use.


Subject(s)
Herbicides , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Argentina , Herbicides/chemistry , Adsorption , Glyphosate
2.
Mar Environ Res ; 171: 105468, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34507027

ABSTRACT

Coastal regions are subjected to degradation due to anthropogenic pollution. Effluents loaded with variable concentrations of heavy metal, persistent organic pollutant, as well as nutrients are discharged in coastal areas leading to environmental degradation. In the past years, many scientists have studied, not only the effect of different contaminants on coastal ecosystems but also, they have searched for organisms tolerant to pollutants that can be used as bioindicators or for biomonitoring purposes. Furthermore, many researchers have demonstrated the capacity of different marine organisms to remove heavy metals and persistent organic pollutants, as well as to reduce nutrient concentration, which may lead to eutrophication. In this sense, Ulva lactuca, a green macroalgae commonly found in coastal areas, has been extensively studied for its capacity to accumulate pollutants; as a bioindicator; as well as for its remediation capacity. This paper aims to review the information published regarding the use of Ulva lactuca in environmental applications. The review was focused on those studies that analyse the role of this macroalga as a biomonitor or in bioremediation experiments.


Subject(s)
Environmental Restoration and Remediation , Ulva , Water Pollutants, Chemical , Biodegradation, Environmental , Ecosystem , Environmental Biomarkers , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
J Colloid Interface Sci ; 444: 115-22, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25594802

ABSTRACT

HYPOTHESIS: The environmental mobility and bioavailability of Picloram (PCM) are determined by the amine and carboxylate chemical groups interaction with the soils mineral phases. Clay particles, such as montmorillonite (Mt), and the pH value of the media could play an important role in adsorption processes. Thus, the study of the role of soil components other than organic matter deserves further investigation for a more accurate assessment of the risk of groundwater contamination. EXPERIMENTS: Samples with PCM adsorbed on Mt dispersions were prepared at pH 3-9. Subsequently, the dispersions were separated, washed, centrifuged and stored at room temperature. Picloram (PCM) herbicide interaction with surface groups of montmorillonite (Mt) was studied using XRD, DTA, FTIR and XPS techniques. FINDINGS: The entrance of PCM into the Mt basal space, in two different arrangements, perpendicular and planar, is proposed and the final arrangement depends on PCM concentration. The interaction of PCM with Mt surface sites through the nitrogen of the pyridine ring and carboxylic group of PCM, forming bidentate and bridge inner-sphere complexes was confirmed by FTIR and XPS analysis. The acidity constant of the PCM adsorbed on the Mt surface was calculated.


Subject(s)
Bentonite/chemistry , Herbicides/chemistry , Picloram/chemistry , Adsorption , Aluminum Silicates/chemistry , Clay , Photoelectron Spectroscopy , Soil/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
4.
Colloids Surf B Biointerfaces ; 105: 251-8, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23376752

ABSTRACT

This study investigated the adsorption of glyphosate (PMG) onto the green algae Ulva lactuca. PMG was not adsorbed by U. lactuca but PMG was adsorbed when the process was mediated by Cu(II) with molar ratios Cu(II):PMG≥1.5:1. U. lactuca was characterized by water adsorption surface area, FTIR, SEM and EDS. The Langmuir and Freundlich models were applied. Results showed that the biosorption processes for copper and PMG in the presence of copper were described described by the Langmuir model (qmax=0.85±0.09 mmol g(-1), KL=0.55±0.14 l mmol(-1) and qmax=3.65±0.46 mmol g(-1), KL=0.103±0.03 l mmol(-1), respectively). Copper adsorption was greater in the presence of PMG than in the absence of the pesticide and the adsorption can only be represented by the Freundlich model (KF=0.08±0.01, 1/n=1.86±0.07). In all cases studied, the maximum metal uptake (qmax) increased with increasing pH. Surface complexes with a stoichiometry ranging from ≡Cu-PMG-Cu to ≡Cu-PMG-Cu3 are suggested as reaction products of the process. Due to the increasing amounts of PMG applied in Argentina, natural reservoirs present considerable amounts of this herbicide. The value of this work resides in using U. lactuca, a marine seaweed commonly found along coastlines all over the world, as a biosorbent for PMG.


Subject(s)
Copper/metabolism , Glycine/analogs & derivatives , Herbicides/metabolism , Ulva/metabolism , Adsorption , Biomass , Copper/chemistry , Glycine/chemistry , Glycine/metabolism , Herbicides/chemistry , Hydrogen-Ion Concentration , Spectrophotometry, Infrared , Ulva/chemistry , Water/chemistry , Water/metabolism , Glyphosate
5.
J Hazard Mater ; 213-214: 123-32, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22342902

ABSTRACT

Many industries have high heavy metals concentrations in their effluents that should be treated before disposal in drains or natural watercourses. When adsorption process is evaluated to generate and implement an efficient, economical and sustainable method suitable for heavy metals removal from contaminated effluents, it is necessary to develop an experimental setup that contains the adsorbent. Ulva lactuca, a marine green alga, was studied as a natural biosorbent for heavy metals at acid pH conditions. Adsorption experiments were carried out in glass columns and in batch where the alga was suspended or fixed in an agar matrix. Langmuir and Freundlich models were applied to the experimental results. Langmuir model best describes the adsorption isotherms in all analyzed cases. The adsorption capacity increases with pH. Kinetic studies demonstrate that, in most studied cases, the adsorption follows a pseudo second order kinetics model. Removal efficiencies of the biomaterial supported in agar or fixed in columns were: fixed in columns>suspended in batch mode>fixed in agar. Finally, the effect of the presence of two sorbates, Cd and Pb, in the solution was measured and results demonstrate that adsorption of both metals are diminished by co/adsorption.


Subject(s)
Metals, Heavy/chemistry , Ulva/chemistry , Adsorption , Agar , Algorithms , Biomass , Cadmium/chemistry , Copper/chemistry , Hydrogen-Ion Concentration , Kinetics , Lead/chemistry , Microscopy, Electron, Scanning , Reproducibility of Results , Solutions , Waste Disposal, Fluid , Water Purification/methods , Zinc/chemistry
6.
Ecotoxicology ; 20(6): 1225-32, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21465180

ABSTRACT

Bioassays were carried out to study the differences in cadmium (Cd) toxicity to premetamorphic tadpoles of Rhinella arenarum, in aqueous solutions with variable contents of calcium in the presence and absence of humic acids, and to analyze the relationship between the free Cd(2+) ion concentrations calculated by chemical modeling and the biological results. The correlation analysis of the free Cd(2+) concentration calculated by chemical speciation and the analytical Cd yielded a direct relationship between the degree of toxicity and the slope value. The lowest slope was obtained from the treatments with lowest free Cd(2+) ion concentration and lowest toxicity, whereas the highest slope was obtained from the most toxic treatment. At comparable concentrations of free Cd(2+), intralarval Cd increased as the Ca in the solution decreased. At equal contents of Ca, in the presence of humic acids, the content of Cd in larvae was higher and the toxicity values lower. The results obtained in this study show that waterborne Ca could offer some protection from metal uptake and accumulation by competitive inhibition in the uptake mechanism that involves active transport via cell membrane. In the systems with humic materials, a certain proportion of the Cd present in the solution was associated to them and thus became less bioavailable.


Subject(s)
Cadmium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bufonidae , Cadmium/chemistry , Calcium/analysis , Calcium/chemistry , Humic Substances/analysis , Larva/drug effects , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...