Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 201(5): 691-698, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30799528

ABSTRACT

An antibiotic-producing actinobacterium, designated isolate B375T, was isolated from marine sponge Glodia corticostylifera collected from Praia Guaecá, São Paulo, Brazil (23°49S; 45°25W), and its taxonomic position established using data from a polyphasic study. The organism showed a combination of morphological, physiological, biochemical and chemotaxonomic characteristics consistent with its classification in the genus Williamsia. Comparative 16S rRNA gene sequence analysis indicated that the strain B375T was most closely related to Williamsia serinedens DSM 45037T and Williamsia spongiae DSM 46676T and having 99.43% and 98.65% similarities, respectively, but was distinguished from these strains by a low level of DNA-DNA relatedness (53.2-63.2%) and discriminatory phenotypic properties. Chemotaxonomic investigations revealed the presence of cell-wall chemotype IV and N-glycolated muramic acid residues present in the wall cells. The cells contained C16:0 (23.3%), C18:0 10-methyl (23.2%) and C18:1 ω9c (21.6%) as the major cellular fatty acids. The strain B375T inhibited growing of Staphylococcus aureus and Colletotrichum gloeosporioides strains and was considered a producer of antimicrobial compounds. Based on the data obtained, the isolate B375T (= CBMAI 1090T = DSM 46677T) should, therefore, be classified as the type strain of a novel species of the genus Williamsia, for which the name Williamsia aurantiacus sp. nov. is proposed.


Subject(s)
Actinomycetales/isolation & purification , Actinomycetales/metabolism , Anti-Bacterial Agents/metabolism , Colletotrichum/growth & development , Porifera/microbiology , Staphylococcus aureus/growth & development , Actinomycetales/genetics , Animals , Bacterial Typing Techniques , Brazil , DNA, Bacterial/genetics , Fatty Acids/analysis , Muramic Acids/analysis , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Int J Syst Evol Microbiol ; 67(5): 1260-1265, 2017 May.
Article in English | MEDLINE | ID: mdl-28100308

ABSTRACT

A novel actinobacterium, designated isolate B138T, was isolated from the marine sponge, Amphimedon viridis, which was collected from Praia Guaecá (São Paulo, Brazil), and its taxonomic position was established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological characteristics consistent with its classification in the genus Williamsia and it formed a distinct phyletic line in the Williamsia 16S rRNA gene tree. It was most closely related to Williamsia serinedens DSM 45037T and Williamsia deligens DSM 44902T (99.0 % 16S rRNA gene sequence similarity) and Williamsia maris DSM 44693T (97.5 % 16S rRNA gene sequence similarity), but was distinguished readily from these strains by the low DNA-DNA relatedness values (62.3-64.4 %) and by the discriminatory phenotypic properties. Based on the data obtained, the isolate B138T (=CBMAI 1094T=DSM 46676T) should be classified as the type strain of a novel species of the genus Williamsia, for which the name Williamsia spongiae sp. nov. is proposed.


Subject(s)
Actinomycetales/classification , Phylogeny , Porifera/microbiology , Actinomycetales/genetics , Actinomycetales/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , Brazil , DNA, Bacterial/genetics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Antonie Van Leeuwenhoek ; 109(2): 297-303, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26678782

ABSTRACT

A novel actinobacterium, designated isolate B204(T), was isolated from a marine ascidian Didemnum sp., collected from São Paulo, Brazil, and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological characteristics consistent with its classification in the genus Gordonia and formed a distinct phyletic line in the Gordonia 16S rRNA gene tree. It was closely related to Gordonia terrae DSM 43249(T) (99.9 % 16S rRNA gene sequence similarity) and Gordonia lacunae DSM 45085(T) (99.3 % 16S rRNA gene sequence similarity) but was distinguished from these strains by a moderate level of DNA-DNA relatedness (63.0 and 54.7 %) and discriminatory phenotypic properties. Based on the data obtained, the isolate B204(T) (=CBMAI 1069(T) = DSM 46679(T)) should therefore be classified as the type strain of a novel species of the genus Gordonia, for which the name Gordonia didemni sp. nov. is proposed.


Subject(s)
Actinobacteria/isolation & purification , Seawater/microbiology , Urochordata/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Animals , Brazil , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Article in English | MEDLINE | ID: mdl-26579205

ABSTRACT

Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...