Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 38(7): 2077-2079, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35020801

ABSTRACT

SUMMARY: To meet the increased need of making biomedical resources more accessible and reusable, Web Application Programming Interfaces (APIs) or web services have become a common way to disseminate knowledge sources. The BioThings APIs are a collection of high-performance, scalable, annotation as a service APIs that automate the integration of biological annotations from disparate data sources. This collection of APIs currently includes MyGene.info, MyVariant.info and MyChem.info for integrating annotations on genes, variants and chemical compounds, respectively. These APIs are used by both individual researchers and application developers to simplify the process of annotation retrieval and identifier mapping. Here, we describe the BioThings Software Development Kit (SDK), a generalizable and reusable toolkit for integrating data from multiple disparate data sources and creating high-performance APIs. This toolkit allows users to easily create their own BioThings APIs for any data type of interest to them, as well as keep APIs up-to-date with their underlying data sources. AVAILABILITY AND IMPLEMENTATION: The BioThings SDK is built in Python and released via PyPI (https://pypi.org/project/biothings/). Its source code is hosted at its github repository (https://github.com/biothings/biothings.api). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biomedical Research , Software , Information Storage and Retrieval
3.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-30985891

ABSTRACT

The accelerating growth of genomic and proteomic information for Chlamydia species, coupled with unique biological aspects of these pathogens, necessitates bioinformatic tools and features that are not provided by major public databases. To meet these growing needs, we developed ChlamBase, a model organism database for Chlamydia that is built upon the WikiGenomes application framework, and Wikidata, a community-curated database. ChlamBase was designed to serve as a central access point for genomic and proteomic information for the Chlamydia research community. ChlamBase integrates information from numerous external databases, as well as important data extracted from the literature that are otherwise not available in structured formats that are easy to use. In addition, a key feature of ChlamBase is that it empowers users in the field to contribute new annotations and data as the field advances with continued discoveries. ChlamBase is freely and publicly available at chlambase.org.


Subject(s)
Chlamydia , Data Curation , Databases, Genetic , Chlamydia/classification , Chlamydia/genetics , Chlamydia/metabolism , Genomics , Proteomics
4.
BMC Genomics ; 19(1): 594, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30086717

ABSTRACT

BACKGROUND: The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. RESULTS: Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. CONCLUSION: Expression profiles obtained from public RNA-seq datasets - despite being generated by different laboratories using different methodologies - can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.


Subject(s)
Chickens/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Animals , Atlases as Topic , Databases, Genetic , High-Throughput Nucleotide Sequencing
5.
BMC Bioinformatics ; 19(1): 30, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29390967

ABSTRACT

BACKGROUND: Application Programming Interfaces (APIs) are now widely used to distribute biological data. And many popular biological APIs developed by many different research teams have adopted Javascript Object Notation (JSON) as their primary data format. While usage of a common data format offers significant advantages, that alone is not sufficient for rich integrative queries across APIs. RESULTS: Here, we have implemented JSON for Linking Data (JSON-LD) technology on the BioThings APIs that we have developed, MyGene.info , MyVariant.info and MyChem.info . JSON-LD provides a standard way to add semantic context to the existing JSON data structure, for the purpose of enhancing the interoperability between APIs. We demonstrated several use cases that were facilitated by semantic annotations using JSON-LD, including simpler and more precise query capabilities as well as API cross-linking. CONCLUSIONS: We believe that this pattern offers a generalizable solution for interoperability of APIs in the life sciences.


Subject(s)
Information Storage and Retrieval/methods , Software , Biological Science Disciplines , Databases, Factual , Humans , Internet
6.
PLoS Genet ; 13(9): e1006997, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28915238

ABSTRACT

Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.


Subject(s)
Gene Expression Profiling , Genome , Sheep, Domestic/genetics , Transcriptome/genetics , Animals , Breeding , Cluster Analysis , Milk , Organ Specificity/genetics
7.
Genome Biol ; 17(1): 91, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27154141

ABSTRACT

Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.


Subject(s)
Genetic Variation , Molecular Sequence Annotation , Sequence Analysis, DNA , Software , Database Management Systems , Databases, Genetic , Humans , Internet , User-Computer Interface
8.
Nucleic Acids Res ; 44(D1): D313-6, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26578587

ABSTRACT

BioGPS (http://biogps.org) is a centralized gene-annotation portal that enables researchers to access distributed gene annotation resources. This article focuses on the updates to BioGPS since our last paper (2013 database issue). The unique features of BioGPS, compared to those of other gene portals, are its community extensibility and user customizability. Users contribute the gene-specific resources accessible from BioGPS ('plugins'), which helps ensure that the resource collection is always up-to-date and that it will continue expanding over time (since the 2013 paper, 162 resources have been added, for a 34% increase in the number of resources available). BioGPS users can create their own collections of relevant plugins and save them as customized gene-report pages or 'layouts' (since the 2013 paper, 488 user-created layouts have been added, for a 22% increase in the number of layouts). In addition, we recently updated the most popular plugin, the 'Gene expression/activity chart', to include ∼ 6000 datasets (from ∼ 2000 datasets) and we enhanced user interactivity. We also added a new 'gene list' feature that allows users to save query results for future reference.


Subject(s)
Databases, Genetic , Gene Expression Profiling , Genes , Molecular Sequence Annotation , Animals , Humans , Mice , Rats
9.
Nucleic Acids Res ; 41(Web Server issue): W242-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23685612

ABSTRACT

The PhyloFacts 'Fast Approximate Tree Classification' (FAT-CAT) web server provides a novel approach to ortholog identification using subtree hidden Markov model-based placement of protein sequences to phylogenomic orthology groups in the PhyloFacts database. Results on a data set of microbial, plant and animal proteins demonstrate FAT-CAT's high precision at separating orthologs and paralogs and robustness to promiscuous domains. We also present results documenting the precision of ortholog identification based on subtree hidden Markov model scoring. The FAT-CAT phylogenetic placement is used to derive a functional annotation for the query, including confidence scores and drill-down capabilities. PhyloFacts' broad taxonomic and functional coverage, with >7.3 M proteins from across the Tree of Life, enables FAT-CAT to predict orthologs and assign function for most sequence inputs. Four pipeline parameter presets are provided to handle different sequence types, including partial sequences and proteins containing promiscuous domains; users can also modify individual parameters. PhyloFacts trees matching the query can be viewed interactively online using the PhyloScope Javascript tree viewer and are hyperlinked to various external databases. The FAT-CAT web server is available at http://phylogenomics.berkeley.edu/phylofacts/fatcat/.


Subject(s)
Phylogeny , Proteins/classification , Software , Animals , Classification/methods , Internet , Markov Chains , Molecular Sequence Annotation , Proteins/genetics , Proteins/physiology , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...