Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798519

ABSTRACT

ATTR amyloidosis is a degenerative disorder characterized by the systemic deposition of the protein transthyretin. These amyloid aggregates of transthyretin (ATTR) can deposit in different parts of the body causing diverse clinical manifestations. Our laboratory aims to investigate a potential relationship between the different genotypes, organ of deposition, clinical phenotypes, and the structure of ATTR fibrils. Using cryo-electron microscopy, we have recently described how the neuropathic related mutations ATTRv-I84S and ATTRv-V122∆ can drive structural polymorphism in ex vivo fibrils. Here we question whether the mutation ATTRv-T60A, that commonly triggers cardiac and neuropathic symptoms, has a similar effect. To address this question, we extracted and determined the structure of ATTR-T60A fibrils from multiple organs (heart, thyroid, kidney, and liver) from the same patient and from the heart of two additional patients. We have found a consistent conformation among all the fibril structures, acquiring the "closed-gate morphology" previously found in ATTRwt and others ATTRv related to cardiac or mixed manifestations. The closed-gate morphology is composed by two segments of the protein that interact together forming a polar channel, where the residues glycine 57 to isoleucine 68 act as a gate of the polar cavity. Our study indicates that ATTR-T60A fibrils present in peripheral organs adopt the same structural conformation in all patients, regardless of the organ of deposition.

2.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798361

ABSTRACT

ATTR amyloidosis is a systemic disease characterized by the deposition of amyloid fibrils made of transthyretin, a protein integral to transporting retinol and thyroid hormones. Transthyretin is primarily produced by the liver and circulates in blood as a tetramer. The retinal epithelium also secretes transthyretin, which is secreted to the vitreous humor of the eye. Because of mutations or aging, transthyretin can dissociate into amyloidogenic monomers triggering amyloid fibril formation. The deposition of transthyretin amyloid fibrils in the myocardium and peripheral nerves causes cardiomyopathies and neuropathies, respectively. Using cryo-electron microscopy, here we determined the structures of amyloid fibrils extracted from cardiac and nerve tissues of an ATTRv-V30M patient. We found that fibrils from both tissues share a consistent structural conformation, similar to the previously described structure of cardiac fibrils from an individual with the same genotype, but different from the fibril structure obtained from the vitreous humor. Our study hints to a uniform fibrillar architecture across different tissues within the same individual, only when the source of transthyretin is the liver. Moreover, this study provides the first description of ATTR fibrils from the nerves of a patient and enhances our understanding of the role of deposition site and protein production site in shaping the fibril structure in ATTRv-V30M amyloidosis.

3.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766262

ABSTRACT

ATTR amyloidosis is a phenotypically heterogeneous disease characterized by the pathological deposition of transthyretin in the form of amyloid fibrils into various organs. ATTR amyloidosis may stem from mutations in variant (ATTRv) amyloidosis, or aging in wild-type (ATTRwt) amyloidosis. ATTRwt generally manifests as a cardiomyopathy phenotype, whereas ATTRv may present as polyneuropathy, cardiomyopathy, or mixed, in combination with many other symptoms deriving from secondary organ involvement. Over 130 different mutational variants of transthyretin have been identified, many of them being linked to specific disease symptoms. Yet, the role of these mutations in the differential disease manifestation remains elusive. Using cryo-electron microscopy, here we structurally characterized fibrils from the heart of an ATTRv patient carrying the V122Δ mutation, predominantly associated with polyneuropathy. Our results show that these fibrils are polymorphic, presenting as both single and double filaments. Our study alludes to a structural connection contributing to phenotypic variation in ATTR amyloidosis, as polymorphism in ATTR fibrils may manifest in patients with predominantly polyneuropathic phenotypes.

4.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38496656

ABSTRACT

ATTR amyloidosis results from the conversion of transthyretin into amyloid fibrils that deposit in tissues causing organ failure and death. This conversion is facilitated by mutations in ATTRv amyloidosis, or aging in ATTRwt amyloidosis. ATTRv amyloidosis exhibits extreme phenotypic variability, whereas ATTRwt amyloidosis presentation is consistent and predictable. Previously, we found an unprecedented structural variability in cardiac amyloid fibrils from polyneuropathic ATTRv-I84S patients. In contrast, cardiac fibrils from five genotypically-different patients with cardiomyopathy or mixed phenotypes are structurally homogeneous. To understand fibril structure's impact on phenotype, it is necessary to study the fibrils from multiple patients sharing genotype and phenotype. Here we show the cryo-electron microscopy structures of fibrils extracted from four cardiomyopathic ATTRwt amyloidosis patients. Our study confirms that they share identical conformations with minimal structural variability, consistent with their homogenous clinical presentation. Our study contributes to the understanding of ATTR amyloidosis biopathology and calls for further studies.

6.
Nat Chem Biol ; 20(5): 646-655, 2024 May.
Article in English | MEDLINE | ID: mdl-38347213

ABSTRACT

Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.


Subject(s)
Amyloid , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Amyloid/metabolism , Humans , Animals , Mice , Parkinson Disease/metabolism , Parkinson Disease/pathology , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Protein Processing, Post-Translational , Cryoelectron Microscopy , Neurons/metabolism , Neurons/pathology
7.
Nat Commun ; 15(1): 581, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233397

ABSTRACT

ATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils. Here we investigate whether there is such an association in ATTRv amyloidosis patients carrying the mutation I84S. Using cryo-electron microscopy, we determined the structures of cardiac fibrils extracted from three ATTR amyloidosis patients carrying the ATTRv-I84S mutation, associated with a consistent clinical phenotype. We found that in each ATTRv-I84S patient, the cardiac fibrils exhibited different local conformations, and these variations can co-exist within the same fibril. Our finding suggests that one amyloid disease may associate with multiple fibril structures in systemic amyloidoses, calling for further studies.


Subject(s)
Amyloid Neuropathies, Familial , Brain Diseases , Humans , Amyloid/chemistry , Amyloid Neuropathies, Familial/genetics , Cryoelectron Microscopy , Prealbumin/genetics , Prealbumin/chemistry , Heart
8.
Curr Opin Struct Biol ; 83: 102700, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717490

ABSTRACT

Amyloidoses are fatal conditions associated with the aggregation of proteins into amyloid fibrils that deposit systemically and/or locally. Possibly because the causal mechanism of protein aggregation and deposition is not fully understood, this group of diseases remains uncurable. Advances in structural biology, such as the use of nuclear magnetic resonance and cryo-electron microscopy, have enabled the study of the structures and the conformational nature of the proteins whose aggregation is associated with the underlying pathogenesis of amyloidosis. As a result, the last years of research have translated into the development of directed therapeutic strategies that target the specific conformations of precursors, fibrils, and intermediary species. Current efforts include the use of small molecules, peptides, and antibodies. This review summarizes the recent progress in developing strategies that target specific protein conformations for the treatment of amyloidoses.


Subject(s)
Amyloidosis , Protein Aggregates , Humans , Cryoelectron Microscopy , Amyloidosis/metabolism , Amyloidosis/pathology , Amyloid/chemistry , Protein Conformation
9.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945566

ABSTRACT

The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies. In this work, we report that O-GlcNAc modification of α-Synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by Cryo-EM, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-Synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that post-translational modifications, such as O-GlcNAc modification, of α-Synuclein are key determinants of α-Synuclein amyloid strains and pathogenicity. These findings have significant implications for how we investigate and target amyloids in the brain and could possibly explain the lack of correlation between amyloid burden and neurodegeneration or cognitive decline in some subtypes of NDDs.

10.
J Biomol Struct Dyn ; 41(2): 538-549, 2023 02.
Article in English | MEDLINE | ID: mdl-34856883

ABSTRACT

H2 receptor antagonists are the medication given for treating stomach ulcers, but lately, reports have shown their role in healing several malignant ulcers. The present work entails the interaction of H2 blocker nizatidine with calf thymus (ct)-DNA for determining the binding mode and energetics of the interaction. Multi-spectroscopic, calorimetric, viscometric and bioinformatic analysis revealed that nizatidine interacted with ct-DNA via groove-binding mode and is characterised by exothermic reaction. Moreover, assessment of genotoxic potential of nizatidine in vitro was carried out in peripheral human lymphocytes by alkaline comet assay. DNA damage occurred at high concentrations of nizatidine. Genotoxicity of nizatidine was also evaluated in vivo by assessing cytogenetic biomarkers viz. micronuclei formation and chromosomal aberration test. Nizatidine was able to induce micronuclei formation and chromosomal damage at high dose. Additionally, cytotoxic activity of nizatidine was determined in cancer cell lines, namely HeLa and HCT-116 and compared with the normal human cell line HEK-293 employing MTT assay. It was observed that nizatidine was more toxic towards HeLa and HCT-116 than HEK-293. Cell morphology analysis by compound inverted microscopy further strengthens the finding obtained through MTT assay.


Subject(s)
DNA Damage , Nizatidine , Humans , HEK293 Cells , Comet Assay , DNA
11.
J Biomol Struct Dyn ; 38(10): 3046-3058, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31366288

ABSTRACT

The binding characteristic of anti-platelet drug dipyridamole has been investigated with a transport protein, serum albumin. A multi-spectroscopic approach has been employed, and the results were well supported by in silico molecular docking and simulation studies. The fluorescence quenching of serum albumin at three different temperatures revealed that the mechanism involved is static and the binding constant of the interaction was found to be of the order of 104 M-1. The reaction was found to be spontaneous and involved hydrophobic interactions. Synchronous, 3D fluorescence and CD spectroscopy indicated a change in conformation of bovine serum albumin (BSA) on interaction with DP. Using site-selective markers, the binding site of DP was found to be in subdomain IB. Molecular docking studies further corroborated these results. Molecular dynamic (MD) simulations showed lower RMSD values on interaction, suggesting the existence of a stable complex between DP and BSA. Furthermore, since ß-Cyclodextrin (ßCD) is used to improve the solubility of DP in ophthalmic solutions, therefore, the effect of (ßCD) on the interaction of BSA and DP was also studied, and it was found that in the presence of ßCD, the binding constant for BSA-DP interaction decreased. The present study is an attempt to characterize the transport of DP and to improve its bioavailability, consequently helping in dosage design to achieve optimum therapeutic levels.Communicated by Ramaswamy H. Sarma.


Subject(s)
Serum Albumin, Bovine , beta-Cyclodextrins , Binding Sites , Dipyridamole , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
12.
J Biomol Struct Dyn ; 38(5): 1375-1387, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30955446

ABSTRACT

Nizatidine is a histamine H2 receptor antagonist which act by inhibiting the production of stomach acid, thereby, finds its application in treating various diseases related to the gastrointestinal tract. Studying albumin-drug interaction is important for understanding the pharmacokinetics and pharmacodynamics of therapeutic candidates. In the present work, the interaction of nizatidine with BSA was investigated by employing multi-spectroscopic and computational studies. The formation of BSA-nizatidine complex was characterised by UV-visible and fluorescence based-spectroscopic studies. Steady-state fluorescence demonstrated the static mode of quenching of BSA by nizatidine. The interaction was spontaneous and nizatidine binds to BSA with a stoichiometry of 1:1. Forster resonance energy transfer calculations revealed that there was a high possibility of energy transfer between nizatidine and BSA. The resultant secondary structural change in BSA on the addition of nizatidine was studied by circular dichroism spectroscopy. Moreover, synchronous and three-dimensional fluorescence spectroscopy was used to determine the conformational changes occurred in the structure of albumin on the binding of nizatidine. Competitive-site marker experiments suggested that nizatidine binds in the Sudlow site II of BSA. Additionally, the effect of ß-cyclodextrin as an inclusion compound on the interaction was studied. Furthermore, molecular modelling and simulation studies were performed to corroborate the results obtained above.Communicated by Ramaswamy H. Sarma.


Subject(s)
Nizatidine , beta-Cyclodextrins , Binding Sites , Circular Dichroism , Molecular Docking Simulation , Protein Binding , Serum Albumin , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
13.
Sci Rep ; 9(1): 6912, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061500

ABSTRACT

Iron oxide nanoparticles (IONPs) are known to induce cytotoxicity in various cancer cell lines through the generation of reactive oxygen species (ROS). However, the studies on its potential to induce toxicity in normal cell lines and in vivo system are limited and ambiguity still exists. Additionally, small molecules are known to interact with the DNA and cause damage to the DNA. The present study is designed to evaluate the potential interaction of IONPs with DNA along with their other toxicological effects and subsequent attenuation by thymoquinone both in vitro (primary lymphocytes) and in vivo (Wistar rats). IONPs were characterized by TEM, SEM-EDS, and XRD. The results from DNA interaction studies showed that IONPs formed a complex with DNA and also got intercalated between the base pairs of the DNA. The decrease in percent cell viability of rat's lymphocytes was observed along with an increase in ROS generation in a dose-dependent manner (50, 100, 200, 400 and 800 µg/ml of IONPs). The genetic damage in in vivo might be due to the generation of ROS as depletion in anti-enzymatic activity was observed along with an increase in lipid peroxidation in a dose-dependent manner (25, 50, 100 mg/kg of IONPs). Interestingly, supplementation of thymoquinone in combination with IONPs has significantly (P < 0.05) attenuated the genetic and oxidative damage in a dose-dependent manner both in vitro and in vivo. It can be concluded that thymoquinone has the potential to attenuate the oxidative stress and genetic toxicity in vitro and in vivo.


Subject(s)
Benzoquinones/pharmacology , DNA/metabolism , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Nanoparticles/toxicity , Oxidative Stress/drug effects , Animals , Ferric Compounds/antagonists & inhibitors , Ferric Compounds/metabolism , Lipid Peroxidation/drug effects , Male , Mutagens/chemistry , Mutagens/metabolism , Mutagens/toxicity , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
14.
J Biomol Struct Dyn ; 37(4): 863-876, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29513159

ABSTRACT

Ticlopidine is an anti-platelet drug that functions as a P2Y12 receptor antagonist. The present study provides a detailed characterization of interaction of ticlopidine with a model transport protein, bovine serum albumin (BSA) as well as an assessment of its bilirubin displacing ability using a multi-spectroscopic approach in combination with isothermal titration calorimetry. The value of binding constant determined using ITC studies was found to be 3.03 × 103 M-1 with a binding stoichiometry of approximately 1:1. Competitive site marker experiments indicate that ticlopidine binds to Sudlow site I, located in subdomain IIA of BSA. In addition, Circular dichroism and 3D fluorescence spectroscopy indicated structural and conformational changes in BSA on interaction with ticlopidine. Thermodynamic parameters suggested that the reaction was spontaneous, exothermic, entropically driven, and involved hydrophobic interactions. These results were well supported by those obtained through molecular docking studies. Additionally, the effect of ticlopidine on bilirubin and albumin interaction was evaluated using the peroxidase method as well as through fluorescence spectroscopy. Ticlopidine was found to displace bilirubin from serum albumin. Moreover, the binding constant of bilirubin-serum albumin interaction also decreased in presence of ticlopidine. The results indicated that ticlopidine is a competitive displacer of bilirubin in vitro and may contribute to the incidences hyperbilirubinemia associated with the usage of this drug.


Subject(s)
Bilirubin/metabolism , In Vitro Techniques/methods , Serum Albumin, Bovine/metabolism , Ticlopidine/metabolism , Animals , Bilirubin/chemistry , Binding Sites , Cattle , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Thermodynamics , Ticlopidine/chemistry
15.
Arch Biochem Biophys ; 652: 27-37, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29908138

ABSTRACT

Studying the interaction of therapeutic molecules with serum albumin is important to understand their biopharmaceutics, pharmacokinetics and toxicity as well as their relation with the structure and function of protein. The biomolecular interaction of an anti-spasmodic drug, pirenzepine with bovine serum albumin (BSA) was investigated using multi-spectroscopic, calorimetric and docking studies. Fluorescence quenching of BSA on interaction with pirenzepine revealed the static mode of quenching. Pirenzepine exhibited a moderate binding to serum albumin with the binding constant value in the order of 104 M-1. Based on the Forster's non-radiative energy transfer theory, the average binding distance between BSA and pirenzepine was calculated. Competitive site marker experiments demonstrated that pirenzepine binds to the sudlow site III located in subdomain IB of BSA. Circular dichroic spectroscopy indicated secondary structural changes in BSA while three-dimensional fluorescence spectroscopy showed the microenvironmental perturbations in the structure of BSA on interaction with pirenzepine. Moreover, thermodynamic parameters obtained from isothermal titration calorimetry suggested that the interaction between pirenzepine and BSA was spontaneous and hydrophobic interactions played the major role in stabilizing the complex. Additionally, the effect of inclusion compound, ß-cyclodextrin on pirenzepine-BSA interaction was studied. As pirenzepine is involved in drug-drug interactions, ß-cyclodextrin forms an inclusion complex with pirenzepine and prevents drug-drug interactions, thereby, enhancing the therapeutic effect of pirenzepine. Some common metal ions have also been found to interfere with pirenzepine-BSA interaction. The above experimental results further corroborated the molecular modelling studies.


Subject(s)
Muscarinic Antagonists/metabolism , Pirenzepine/metabolism , Serum Albumin, Bovine/metabolism , beta-Cyclodextrins/pharmacology , Biophysical Phenomena , Calorimetry , Circular Dichroism , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Structure-Activity Relationship
16.
Article in English | MEDLINE | ID: mdl-28614751

ABSTRACT

Ticlopidine is an anti-platelet drug which belongs to the thienopyridine structural family and exerts its effect by functioning as an ADP receptor inhibitor. Ticlopidine inhibits the expression of TarO gene in S. aureus and may provide protection against MRSA. Groove binding agents are known to disrupt the transcription factor DNA complex and consequently inhibit gene expression. Understanding the mechanism of interaction of ticlopidine with DNA can prove useful in the development of a rational drug designing system. At present, there is no such study on the interaction of anti-platelet drugs with nucleic acids. A series of biophysical experiments were performed to ascertain the binding mode between ticlopidine and calf thymus DNA. UV-visible and fluorescence spectroscopic experiments confirmed the formation of a complex between ticlopidine and calf thymus DNA. Moreover, the values of binding constant were found to be in the range of 103M-1, which is indicative of groove binding between ticlopidine and calf thymus DNA. These results were further confirmed by studying the effect of denaturation on double stranded DNA, iodide quenching, viscometric studies, thermal melting profile as well as CD spectral analysis. The thermodynamic profile of the interaction was also determined using isothermal titration calorimetric studies. The reaction was found to be endothermic and the parameters obtained were found to be consistent with those of known groove binders. In silico molecular docking studies further corroborated well with the experimental results.


Subject(s)
DNA , Platelet Aggregation Inhibitors , Ticlopidine , Animals , Calorimetry , Cattle , DNA/chemistry , DNA/metabolism , Molecular Docking Simulation , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Ticlopidine/chemistry , Ticlopidine/metabolism , Viscosity
17.
Arch Biochem Biophys ; 625-626: 1-12, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28558964

ABSTRACT

Pirenzepine is an anti-ulcer agent which belongs to the anti-cholinergic group of gastrointestinal disorder drugs and functions as an M1 receptor selective antagonist. Drug-DNA interaction studies are of great significance as it helps in the development of new therapeutic drugs. It provides a deeper understanding into the mechanism through which therapeutic drugs control gene expression. Interaction of pirenzepine with calf-thymus DNA (Ct-DNA) was determined via a series of biophysical techniques. UV-visible absorption and fluorescence spectroscopy confirmed the formation of pirenzepine-Ct-DNA complex. The values of binding constant from various experiments were calculated to be in the order of 103 M-1 which is consistent with the groove binding mode. Various spectrofluorimetric experiments like competitive displacement of well known dyes with drug, iodide quenching experiments and the effect of Ct-DNA denaturation in presence of drug confirmed the binding of pirenzepine to the groove of Ct-DNA. The binding mode was further established by viscometric, circular dichroic and molecular modelling studies. Thermodynamic parameters obtained from isothermal titration calorimetric studies suggest that the interaction of pirenzepine with Ct-DNA is enthalpically driven. The value of TΔS and ΔH calculated from calorimetric studies were found to be 4.3 kcal mol-1 and -2.54 kcal mol-1 respectively, indicating that pirenzepine-Ct-DNA complex is mainly stabilized by hydrophobic interaction and hydrogen bonding. The binding energy calculated was -7.5 kcal mol-1 from modelling studies which was approximately similar to that obtained by isothermal titration calorimetric studies. Moreover, the role of electrostatic interaction in the binding of pirenzepine to Ct-DNA cannot be precluded.


Subject(s)
DNA/metabolism , Gastrointestinal Agents/metabolism , Pirenzepine/metabolism , Animals , Calorimetry , Cattle , DNA/chemistry , Molecular Docking Simulation , Nucleic Acid Conformation/drug effects , Nucleic Acid Denaturation/drug effects , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...