Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Pharmacol ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38284732

ABSTRACT

Alnustone (4(E)-,6(E)-1,7-Diphenyl-hepta-4,6-dien-3-one) is a non-phenolic natural diarylheptanoid, which was first isolated and identified from the male flower of Alnus pendula (Betulaceae). It can also be isolated from Curcuma xanthorrhiza Roxb (Zingiberaceae) rhizomes and Alpinia katsumadai Hayata (Zingiberaceae) seeds. It was first synthesized through a five-step process from ß-phenyl propionyl chloride. In later years, new methods for synthesizing Alnustone were designed and performed with different yields. Due to the various therapeutic effects exhibited by alnustone like other diarylheptanoids, its biological activities such as antioxidant, antibacterial, and anti-inflammatory properties have been the subject of many studies. This article has reviewed different aspects of this valuable natural compound, including its natural and synthetic sources, therapeutic effects, and pharmacokinetics as a potential future therapeutic agent.

2.
Sci Rep ; 13(1): 3278, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841837

ABSTRACT

Valorization of waste materials and byproducts as adsorbents is a sustainable approach for water treatment systems. Pottery Granules (PG) without any chemical and thermal modification were used as a low-cost, abundant, and environmentally benign adsorbent against Pb(II), the toxic metal in drinking water. The porous structure and complex mineral composition of PG made it an efficient adsorbent material for Pb(II). The effect of key physicochemical factors was investigated to determine the significance of contact time, PG dose, pH, solution temperature, and coexisting ions, on the process. Pb(II) removal increased by PG dose in the range of 5-15 g/L, and agitation time from 5 to 60 min. Increasing Pb(II) concentration led to a drop in Pb(II) removal, however, adsorption capacity increased significantly as concentration elevated. Pb(II) removal also increased significantly from ~ 45% to ~ 97% by pH from 2 to 12. A ~ 20% improvement in Pb(II) adsorption after rising the solution temperature by 30˚C, indicated the endothermic nature of the process. The sorption was described to be a favorable process in which Pb(II) was adsorbed in a multilayer onto the heterogeneous PG surface. The qmax of 9.47 mg/g obtained by the Langmuir model was superior among many reported low-cost adsorbents. The Pb(II) adsorption was described well by the Pseudo- first-order kinetic model. Na+, Mg2+, Ca2+, Cd2+, and Zn2+ showed a negligible effect on Pb(II) adsorption. However, the presence of Mn2+ and Fe2+ significantly hindered the process efficacy. In conclusion, the use of waste material such as PG against Pb(II) is a viable option from the economic and effectiveness points of view.

SELECTION OF CITATIONS
SEARCH DETAIL
...