Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139756

ABSTRACT

Implantable electrodes represent a groundbreaking advancement in nervous system research, providing a pivotal tool for recording and stimulating human neural activity. This capability is integral for unraveling the intricacies of the nervous system's functionality and for devising innovative treatments for various neurological disorders. Implantable electrodes offer distinct advantages compared to conventional recording and stimulating neural activity methods. They deliver heightened precision, fewer associated side effects, and the ability to gather data from diverse neural sources. Crucially, the development of implantable electrodes necessitates key attributes: flexibility, stability, and high resolution. Graphene emerges as a highly promising material for fabricating such electrodes due to its exceptional properties. It boasts remarkable flexibility, ensuring seamless integration with the complex and contoured surfaces of neural tissues. Additionally, graphene exhibits low electrical resistance, enabling efficient transmission of neural signals. Its transparency further extends its utility, facilitating compatibility with various imaging techniques and optogenetics. This paper showcases noteworthy endeavors in utilizing graphene in its pure form and as composites to create and deploy implantable devices tailored for neural recordings and stimulations. It underscores the potential for significant advancements in this field. Furthermore, this paper delves into prospective avenues for refining existing graphene-based electrodes, enhancing their suitability for neural recording applications in in vitro and in vivo settings. These future steps promise to revolutionize further our capacity to understand and interact with the neural research landscape.


Subject(s)
Graphite , Humans , Prospective Studies , Electrodes, Implanted , Electrodes , Nervous System
2.
Biosensors (Basel) ; 13(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37366944

ABSTRACT

There is a constant need to maintain the quality of consumed food. In retrospect to the recent pandemic and other food-related problems, scientists have focused on the numbers of microorganisms that are present in different food items. As a result of changes in certain environmental factors such as temperature and humidity, there is a constant risk for the growth of harmful microorganisms, such as bacteria and fungi, in consumed food. This questions the edibility of the food items, and constant monitoring to avoid food poisoning-related diseases is required. Among the different nanomaterials used to develop sensors to detect microorganisms, graphene has been one of the primary materials due to its exceptional electromechanical properties. Graphene sensors are able to detect microorganisms in both a composite and non-composite manner, due to their excellent electrochemical characteristics such as their high aspect ratios, excellent charge transfer capacity and high electron mobility. The paper depicts the fabrication of some of these graphene-based sensors, and their utilization to detect bacteria, fungi and other microorganisms that are present in very small amounts in different food items. In addition to the classified manner of the graphene-based sensors, this paper also depicts some of the challenges that exist in current scenarios, and their possible remedies.


Subject(s)
Biosensing Techniques , Graphite , Nanostructures , Graphite/chemistry , Biosensing Techniques/methods , Nanostructures/chemistry
3.
Materials (Basel) ; 15(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806631

ABSTRACT

The paper presents the use of surfactant-induced MWCNTs/PDMS-based nanocomposites for tactile sensing applications. The significance of nanocomposites-based sensors has constantly been growing due to their enhanced electromechanical characteristics. As a result of the simplified customization for their target applications, research is ongoing to determine the quality and quantity of the precursor materials that are involved in the fabrication of nanocomposites. Although a significant amount of work has been done to develop a wide range of nanocomposite-based prototypes, they still require optimization when mixed with polydimethylsiloxane (PDMS) matrices. Multi-Walled Carbon Nanotubes (MWCNTs) are one of the pioneering materials used in multifunctional sensing applications due to their high yield, excellent electrical conductivity and mechanical properties, and high structural integrity. Among the other carbon allotropes used to form nanocomposites, MWCNTs have been widely studied due to their enhanced bonding with the polymer matrix, highly densified sampling, and even surfacing throughout the composites. This paper highlights the development, characterization and implementation of surfactant-added MWCNTs/PDMS-based nanocomposites. The prototypes consisted of an optimized amount of sodium dodecyl sulfonate (SDS) and MWCNTs mixed as nanofillers in the PDMS matrix. The results have been promising in terms of their mechanical behaviour as they responded well to a maximum strain of 40%. Stable and repeatable output was obtained with a response time of 1 millisecond. The Young's Modulus of the sensors was 2.06 MPa. The utilization of the prototypes for low-pressure tactile sensing applications is also shown here.

4.
Article in English | MEDLINE | ID: mdl-32698330

ABSTRACT

This paper exhibits a thorough review of the use of impedimetric sensors for the analysis of food quality. It helps to understand the contribution of some of the major types of impedimetric sensors that are used for this application. The deployment of impedimetric sensing prototypes has been advantageous due to their wide linear range of responses, detection of the target analyte at low concentrations, good stability, high accuracy and high reproducibility in the results. The choice of these sensors was classified on the basis of structure and the conductive material used to develop them. The first category included the use of nanomaterials such as graphene and metallic nanowires used to form the sensing devices. Different forms of graphene nanoparticles, such as nano-hybrids, nanosheets, and nano-powders, have been largely used to sense biomolecules in the micro-molar range. The use of conductive materials such as gold, copper, tungsten and tin to develop nanowire-based prototypes for the inspection of food quality has also been shown. The second category was based on conventional electromechanical circuits such as electronic noses and other smart systems. Within this sector, the standardized systems, such as electronic noses, and LC circuit -based systems have been explained. Finally, some of the challenges posed by the existing sensors have been listed out, along with an estimate of the increase in the number of sensors employed to assess food quality.


Subject(s)
Biosensing Techniques , Food Quality , Graphite/chemistry , Nanowires/chemistry , Humans
5.
Sensors (Basel) ; 20(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012830

ABSTRACT

The paper presents a review of some of the significant research done on 3D printed mold-based sensors performed in recent times. The utilization of the master molds to fabricate the different parts of the sensing prototypes have been followed for quite some time due to certain distinct advantages. Some of them are easy template preparation, easy customization of the developed products, quick fabrication, and minimized electronic waste. The paper explains the different kinds of sensors and actuators that have been developed using this technique, based on their varied structural dimensions, processed raw materials, designing, and product testing. These differences in the attributes were based on their individualistic application. Furthermore, some of the challenges related to the existing sensors and their possible respective solutions have also been mentioned in the paper. Finally, a market survey has been provided, stating the estimated increase in the annual growth of 3D printed sensors. It also states the type of 3D printing that has been preferred over the years, along with the range of sensors, and their related applications.

6.
Sensors (Basel) ; 19(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395810

ABSTRACT

The paper presents the design and fabrication of a low-cost and easy-to-fabricate laser-induced graphene sensor together with its implementation for multi-sensing applications. Laser-irradiation of commercial polymer film was applied for photo-thermal generation of graphene. The graphene patterned in an interdigitated shape was transferred onto Kapton sticky tape to form the electrodes of a capacitive sensor. The functionality of the sensor was validated by employing them in electrochemical and strain-sensing scenarios. Impedance spectroscopy was applied to investigate the response of the sensor. For the electrochemical sensing, different concentrations of sodium sulfate were prepared, and the fabricated sensor was used to detect the concentration differences. For the strain sensing, the sensor was deployed for monitoring of human joint movements and tactile sensing. The promising sensing results validating the applicability of the fabricated sensor for multiple sensing purposes are presented.

7.
Sensors (Basel) ; 19(13)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266148

ABSTRACT

The paper highlights some of the significant works done in the field of medical and biomedical sensing using silicon-based technology. The use of silicon sensors is one of the pivotal and prolonged techniques employed in a range of healthcare, industrial and environmental applications by virtue of its distinct advantages over other counterparts in Microelectromechanical systems (MEMS) technology. Among them, the sensors for biomedical applications are one of the most significant ones, which not only assist in improving the quality of human life but also help in the field of microfabrication by imparting knowledge about how to develop enhanced multifunctional sensing prototypes. The paper emphasises the use of silicon, in different forms, to fabricate electrodes and substrates for the sensors that are to be used for biomedical sensing. The electrical conductivity and the mechanical flexibility of silicon vary to a large extent depending on its use in developing prototypes. The article also explains some of the bottlenecks that need to be dealt with in the current scenario, along with some possible remedies. Finally, a brief market survey is given to estimate a probable increase in the usage of silicon in developing a variety of biomedical prototypes in the upcoming years.


Subject(s)
Biosensing Techniques , Nanowires/chemistry , Silicon/chemistry , Biomedical Research/methods , Electrodes , Humans , Microtechnology
8.
Sensors (Basel) ; 19(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934649

ABSTRACT

This paper provides a substantial review of some of the significant research done on the fabrication and implementation of laser-assisted printed flexible sensors. In recent times, using laser cutting to develop printed flexible sensors has become a popular technique due to advantages such as the low cost of production, easy sample preparation, the ability to process a range of raw materials, and its usability for different functionalities. Different kinds of laser cutters are now available that work on samples very precisely via the available laser parameters. Thus, laser-cutting techniques provide huge scope for the development of prototypes with a varied range of sizes and dimensions. Meanwhile, researchers have been constantly working on the types of materials that can be processed, individually or in conjugation with one another, to form samples for laser-ablation. Some of the laser-printed techniques that are commonly considered for fabricating flexible sensors, which are discussed in this paper, include nanocomposite-based, laser-ablated, and 3D-printing. The developed sensors have been used for a range of applications, such as electrochemical and strain-sensing purposes. The challenges faced by the current printed flexible sensors, along with a market survey, are also outlined in this paper.

9.
IEEE Trans Biomed Eng ; 65(6): 1264-1271, 2018 06.
Article in English | MEDLINE | ID: mdl-28858783

ABSTRACT

Serum C-terminal telopeptide of type I collagen (CTx-I) assays quantify the fragment of CTx-I released throughout the procedure of bone remodeling. CTx-I is a key bone turnover biomarker where any variation in the level of CTx-I can be an indication of increased bone resorption. This study focuses on a new strategy for the prognosis of bone loss by monitoring the concentration of CTx-I in serum. An interdigital capacitive sensor together with electrochemical impedance spectroscopy was employed to assess the dielectric properties of the test solution. Artificial antibodies have been prepared for CTx-I molecules using the molecular imprinting technique. The sensor was functionalized using the synthesized molecular imprinted polymer in order to introduce the selectivity of CTx-I biomarker to the sensor. Calibration experiments were performed using different known concentration of sample solutions. The proposed biosensor showed a good linear response between 0.1 and 2.5 ng/mL. The detection limit of 0.09 ng/mL was found, encompassing the normal reference ranges required for recognition of bone turnover. Unknown real serum samples obtained from sheep blood were analysed using the proposed biosensor. The validation of the suggested technique was done using enzyme-linked immunosorbent assay (ELISA). The developed biosensor exhibited a good correlation with ELISA.


Subject(s)
Biosensing Techniques/methods , Bone Resorption/diagnosis , Collagen Type I/blood , Electrochemical Techniques/methods , Molecular Imprinting/methods , Animals , Collagen Type I/chemistry , Electrodes , Gold , Peptide Fragments/blood , Peptide Fragments/chemistry , Polymers , Reproducibility of Results , Sheep , Signal Processing, Computer-Assisted
10.
Sensors (Basel) ; 16(7)2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27347968

ABSTRACT

The objective of this paper is to report a novel non-invasive, real-time, and label-free smart assay technique for the prognostic detection of bone loss by electrochemical impedance spectroscopy (EIS). The proposed system incorporated an antibody-antigen-based sensor functionalization to induce selectivity for the C-terminal telopeptide type one collagen (CTx-I) molecules-a bone loss biomarker. Streptavidin agarose was immobilized on the sensing area of a silicon substrate-based planar sensor, patterned with gold interdigital electrodes, to capture the antibody-antigen complex. Calibration experiments were conducted with various known CTx-I concentrations in a buffer solution to obtain a reference curve that was used to quantify the concentration of an analyte in the unknown serum samples. Multivariate chemometric analyses were done to determine the performance viability of the developed system. The analyses suggested that a frequency of 710 Hz is the most discriminating regarding the system sensitivity. A detection limit of 0.147 ng/mL was achieved for the proposed sensor and the corresponding reference curve was linear in the range of 0.147 ng/mL to 2.669 ng/mL. Two sheep blood samples were tested by the developed technique and the results were validated using enzyme-linked immunosorbent assay (ELISA). The results from the proposed technique match those from the ELISA.


Subject(s)
Biosensing Techniques/methods , Bone and Bones/physiology , Monitoring, Physiologic/methods , Animals , Calibration , Collagen Type I/metabolism , Electric Impedance , Equipment Design , Least-Squares Analysis , Multivariate Analysis , Nonlinear Dynamics , Peptides/metabolism , Principal Component Analysis , Prognosis , Reference Standards , Sheep , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...