Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurosci ; 43(1): 125-141, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36347621

ABSTRACT

The human action observation network (AON) encompasses brain areas consistently engaged when we observe other's actions. Although the core nodes of the AON are present from childhood, it is not known to what extent they are sensitive to different action features during development. Because social cognitive abilities continue to mature during adolescence, the AON response to socially-oriented actions, but not to object-related actions, may differ in adolescents and adults. To test this hypothesis, we scanned with functional magnetic resonance imaging (fMRI) male and female typically-developing teenagers (n = 28; 13 females) and adults (n = 25; 14 females) while they passively watched videos of manual actions varying along two dimensions: sociality (i.e., directed toward another person or not) and transitivity (i.e., involving an object or not). We found that action observation recruited the same fronto-parietal and occipito-temporal regions in adults and adolescents. The modulation of voxel-wise activity according to the social or transitive nature of the action was similar in both groups of participants. Multivariate pattern analysis, however, revealed that decoding accuracies in intraparietal sulcus (IPS)/superior parietal lobe (SPL) for both sociality and transitivity were lower for adolescents compared with adults. In addition, in the lateral occipital temporal cortex (LOTC), generalization of decoding across the orthogonal dimension was lower for sociality only in adolescents. These findings indicate that the representation of the content of others' actions, and in particular their social dimension, in the adolescent AON is still not as robust as in adults.SIGNIFICANCE STATEMENT The activity of the action observation network (AON) in the human brain is modulated according to the purpose of the observed action, in particular the extent to which it involves interaction with an object or with another person. How this conceptual representation of actions is implemented during development is largely unknown. Here, using multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data, we discovered that, while the action observation network is in place in adolescence, the fine-grain organization of its posterior regions is less robust than in adults to decode the abstract social dimensions of an action. This finding highlights the late maturation of social processing in the human brain.


Subject(s)
Brain Mapping , Occipital Lobe , Adult , Humans , Male , Adolescent , Female , Child , Brain Mapping/methods , Occipital Lobe/physiology , Temporal Lobe/physiology , Parietal Lobe/physiology , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
2.
Cereb Cortex Commun ; 2(4): tgab057, 2021.
Article in English | MEDLINE | ID: mdl-34806014

ABSTRACT

Cognitive control and social perception both change during adolescence, but little is known of the interaction of these 2 processes. We aimed to characterize developmental changes in brain activity related to the influence of a social stimulus on cognitive control and more specifically on inhibitory control. Children (age 8-11, n = 19), adolescents (age 12-17, n = 20), and adults (age 24-40, n = 19) performed an antisaccade task with either faces or cars as visual stimuli, during functional magnetic resonance brain imaging. We replicate the finding of the engagement of the core oculomotor and face perception brain regions in all age-groups, with increased involvement of frontoparietal oculomotor regions and fusiform face regions with age. The antisaccade-related activity was modulated by stimulus category significantly only in adolescents. This interaction was observed mainly in occipitotemporal regions as well as in supplementary motor cortex and postcentral gyrus. These results indicate a special treatment of social stimuli during adolescence.

3.
Sleep ; 42(9)2019 09 06.
Article in English | MEDLINE | ID: mdl-31260534

ABSTRACT

The use of screen electronic devices in the evening negatively affects sleep. Yet, sleep is known to be essential for brain maturation and a key factor for good academic performance, and thus is particularly critical during childhood and adolescence. Although previous studies reported associations between screen time and sleep impairment, their causal relationship in adolescents remains unclear. Using actigraphy and daily questionnaires in a large sample of students (12 to 19 years old), we assessed screen time in the evening and sleep habits over 1 month. This included a 2 week baseline phase, followed by a 40 min sleep education workshop and a 2 week interventional phase, in which participants were asked to stop using screen devices after 9 pm during school nights. During the interventional phase, we found that the reduction of screen time after 9 pm correlated with earlier sleep onset time and increased total sleep duration. The latter led to improved daytime vigilance. These findings provide evidence that restricting screen use in the evening represents a valid and promising approach for improving sleep duration in adolescents, with potential implications for daytime functioning and health.


Subject(s)
Academic Performance/statistics & numerical data , Cell Phone Use/statistics & numerical data , Screen Time , Sleep/physiology , Wakefulness/physiology , Actigraphy , Adolescent , Adult , Child , Circadian Rhythm , Computers/statistics & numerical data , Disorders of Excessive Somnolence , Female , Humans , Male , Schools , Sleep Latency/physiology , Smartphone/statistics & numerical data , Students , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...