Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189382

ABSTRACT

Photosynthetic eukaryotes, such as microalgae and plants, foster fundamentally important relationships with their microbiome based on the reciprocal exchange of chemical currencies. Among these, the dicarboxylate metabolite azelaic acid (Aze) appears to play an important, but heterogeneous, role in modulating these microbiomes, as it is used as a carbon source for some heterotrophs but is toxic to others. However, the ability of Aze to promote or inhibit growth, as well as its uptake and assimilation mechanisms into bacterial cells are mostly unknown. Here, we use transcriptomics, transcriptional factor coexpression networks, uptake experiments, and metabolomics to unravel the uptake, catabolism, and toxicity of Aze on two microalgal-associated bacteria, Phycobacter and Alteromonas, whose growth is promoted or inhibited by Aze, respectively. We identify the first putative Aze transporter in bacteria, a 'C4-TRAP transporter', and show that Aze is assimilated through fatty acid degradation, with further catabolism occurring through the glyoxylate and butanoate metabolism pathways when used as a carbon source. Phycobacter took up Aze at an initial uptake rate of 3.8×10-9 nmol/cell/hr and utilized it as a carbon source in concentrations ranging from 10 µM to 1 mM, suggesting a broad range of acclimation to Aze availability. For growth-impeded bacteria, we infer that Aze inhibits the ribosome and/or protein synthesis and that a suite of efflux pumps is utilized to shuttle Aze outside the cytoplasm. We demonstrate that seawater amended with Aze becomes enriched in bacterial families that can catabolize Aze, which appears to be a different mechanism from that in soil, where modulation by the host plant is required. This study enhances our understanding of carbon cycling in the oceans and how microscale chemical interactions can structure marine microbial populations. In addition, our findings unravel the role of a key chemical currency in the modulation of eukaryote-microbiome interactions across diverse ecosystems.


Subject(s)
Dicarboxylic Acids , Ecosystem , Humans , Biological Transport , Carbon
2.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292655

ABSTRACT

Photodynamic therapy (PDT) and photothermal therapy (PTT) have garnered considerable interest as non-invasive cancer treatment modalities. However, these approaches remain limited by low solubility, poor stability and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome these limitations, we have designed biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium and gadolinium) and bismuth selenide (NaYF 4 :Yb/Er/Gd,Bi 2 Se 3 ) within a mesoporous silica shell that encapsulates a PS, Chlorin e6 (Ce6), in its pores. NaYF 4 :Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites the Ce6 to generate cytotoxic reactive oxygen species (ROS), while the PTA Bi 2 Se 3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging (MRI) of the nanospheres. The mesoporous silica shell is coated with lipid/polyethylene glycol (DPPC/cholesterol/DSPE-PEG) to ensure retention of the encapsulated Ce6 and minimize interactions with serum proteins and macrophages that impede tumor targeting. Finally, the coat is functionalized with the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into cancer cells within the mildly acidic tumor microenvironment. Following uptake by cancer cells in vitro , NIR laser irradiation of the nanospheres caused substantial cytotoxicity due to ROS production and hyperthermia. The nanospheres facilitated tumor MRI and thermal imaging, and exhibited potent NIR laser light-induced antitumor effects in vivo via combined PDT and PTT, with no observable toxicity to healthy tissue, thereby substantially prolonging survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.

3.
Nat Commun ; 12(1): 3962, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172723

ABSTRACT

Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer's disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53's transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent anticancer agent.


Subject(s)
Amyloid/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Protein Aggregation, Pathological/metabolism , Tumor Suppressor Protein p53/metabolism , Amides/chemistry , Amides/pharmacology , Amides/therapeutic use , Amyloid/chemistry , Amyloid/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Mice , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Domains , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/therapeutic use , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
4.
Genomics ; 111(5): 997-1005, 2019 09.
Article in English | MEDLINE | ID: mdl-29679643

ABSTRACT

Our understanding of gene regulation is constantly evolving. It is now clear that the majority of cellular transcripts are non-coding RNAs. The spectrum of non-coding RNAs is diverse and includes short (<200 nt) and long non-coding RNAs (lncRNAs) (>200 nt). LncRNAs regulate gene expression through diverse mechanisms. In this review, we describe the emerging roles of lncRNA mediated plant gene regulation. We discuss the current classification of lncRNAs and their role in genome organization and gene regulation. We also highlight a subset of lncRNAs that are epigenetic regulators of plant gene expression. Lastly, we provide an overview of emerging techniques and databases that are employed for the identification and characterization of plant lncRNAs.


Subject(s)
Magnoliopsida/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Plant , RNA, Long Noncoding/classification , Sequence Analysis, RNA/methods
5.
Methods ; 109: 105-113, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27476009

ABSTRACT

Reactive oxygen species (ROS) are by-products of photosynthesis and respiration in plant tissues. Abiotic and biotic stressors also induce the production and temporary accumulation of ROS in plants, including hydrogen peroxide (H2O2), whereby they can act as secondary messengers/chemical mediators in plant defense signaling and lead to programmed cell death. H2O2 acts as a hub for critical information flow in plants. Despite such key roles in fundamental cellular processes, reliable determination of H2O2 levels in plant tissues is hard to achieve. We optimized an Amplex Red-based quantitation method for H2O2 estimation from plant tissue lysate. The standard limit of detection and quantitation was determined as 6 and 18picomol respectively. In this study we also quantified constitutive and/or induced levels of H2O2 in three model plants, Pinus nigra (Austrian pine), Oryza sativa (rice), and Arabidopsis thaliana. Overall, assay sensitivity was in the nmolg-1 FW range. Commonly used additives for H2O2 extraction such as activated charcoal, ammonium sulfate, perchloric acid, polyvinylpolypyrrolidone, and trichloroacetic acid either degraded H2O2 directly or interfered with the Amplex Red assay. Finally, We measured stability of Amplex Red working solution over one month of storage at -80°C and found it to be significantly stable over time. With appropriate modifications, this optimized method should be applicable to any plant tissue.


Subject(s)
Hydrogen Peroxide/isolation & purification , Photosynthesis/genetics , Plant Extracts/chemistry , Reactive Oxygen Species/isolation & purification , Arabidopsis/chemistry , Arabidopsis/metabolism , Hydrogen Peroxide/chemistry , Oryza/chemistry , Oryza/metabolism , Pinus/chemistry , Pinus/metabolism , Plant Extracts/metabolism , Reactive Oxygen Species/chemistry , Signal Transduction
6.
Appl Biochem Biotechnol ; 180(8): 1657-1674, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27491306

ABSTRACT

Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.


Subject(s)
Fusarium/physiology , Glycine max/metabolism , Glycine max/microbiology , Host-Pathogen Interactions , Plant Proteins/metabolism , Protein Interaction Mapping , Proteomics/methods , Electrophoresis, Gel, Two-Dimensional , Plant Diseases/microbiology , Plant Roots/microbiology , Protein Binding
7.
BMC Genomics ; 14: 327, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23672422

ABSTRACT

Here we present an overview of our existing knowledge on the function of RIN4 as a regulator of plant defense and as a guardee of multiple plant R-proteins. Domain analysis of RIN4 reveals two NOI domains. The NOI domain was originally identified in a screen for nitrate induced genes. The domain is comprised of approximately 30 amino acids and contains 2 conserved motifs (PXFGXW and Y/FTXXF). The NOI gene family contains members exclusively from the plant lineage as far back as moss. In addition to the conserved NOI domain, members within the family also contain conserved C-terminal cysteine residue(s) which are sites for acylation and membrane tethering. Other than these two characteristic features, the sequence of the family of NOI-containing proteins is diverse and, with the exception of RIN4, their functions are not known. Recently published interactome data showing interactions between RIN4 and components of the exocyst complex prompt us to raise the hypothesis that RIN4 might be involved in defense associated vesicle trafficking.


Subject(s)
Immunity , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/immunology , Plants/metabolism , Signal Transduction/immunology , Protein Structure, Tertiary
8.
BMC Plant Biol ; 13: 43, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23497186

ABSTRACT

BACKGROUND: The protein encoded by GmRLK18-1 (Glyma_18_02680 on chromosome 18) was a receptor like kinase (RLK) encoded within the soybean (Glycine max L. Merr.) Rhg1/Rfs2 locus. The locus underlies resistance to the soybean cyst nematode (SCN) Heterodera glycines (I.) and causal agent of sudden death syndrome (SDS) Fusarium virguliforme (Aoki). Previously the leucine rich repeat (LRR) domain was expressed in Escherichia coli. RESULTS: The aims here were to evaluate the LRRs ability to; homo-dimerize; bind larger proteins; and bind to small peptides. Western analysis suggested homo-dimers could form after protein extraction from roots. The purified LRR domain, from residue 131-485, was seen to form a mixture of monomers and homo-dimers in vitro. Cross-linking experiments in vitro showed the H274N region was close (<11.1 A) to the highly conserved cysteine residue C196 on the second homo-dimer subunit. Binding constants of 20-142 nM for peptides found in plant and nematode secretions were found. Effects on plant phenotypes including wilting, stem bending and resistance to infection by SCN were observed when roots were treated with 50 pM of the peptides. Far-Western analyses followed by MS showed methionine synthase and cyclophilin bound strongly to the LRR domain. A second LRR from GmRLK08-1 (Glyma_08_g11350) did not show these strong interactions. CONCLUSIONS: The LRR domain of the GmRLK18-1 protein formed both a monomer and a homo-dimer. The LRR domain bound avidly to 4 different CLE peptides, a cyclophilin and a methionine synthase. The CLE peptides GmTGIF, GmCLE34, GmCLE3 and HgCLE were previously reported to be involved in root growth inhibition but here GmTGIF and HgCLE were shown to alter stem morphology and resistance to SCN. One of several models from homology and ab-initio modeling was partially validated by cross-linking. The effect of the 3 amino acid replacements present among RLK allotypes, A87V, Q115K and H274N were predicted to alter domain stability and function. Therefore, the LRR domain of GmRLK18-1 might underlie both root development and disease resistance in soybean and provide an avenue to develop new variants and ligands that might promote reduced losses to SCN.


Subject(s)
Fusarium/pathogenicity , Glycine max/metabolism , Nematoda/pathogenicity , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Proteins/chemistry , Plant Proteins/metabolism , Animals , Dimerization , Disease Resistance/genetics , Disease Resistance/physiology , Plant Proteins/genetics , Glycine max/genetics
9.
Plant Cell ; 24(11): 4748-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23204406

ABSTRACT

Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/physiology , Oryza/immunology , Oryza/microbiology , Plant Diseases/microbiology , Ubiquitin-Protein Ligases/metabolism , Base Sequence , Biological Transport , Disease Resistance , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Magnaporthe/pathogenicity , Oryza/genetics , Oryza/metabolism , Phenotype , Plant Diseases/immunology , Plant Leaves , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Binding , Protein Transport , Proteolysis , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics
10.
BMC Genomics ; 13: 368, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22857610

ABSTRACT

BACKGROUND: Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. RESULTS: A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. CONCLUSIONS: The inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.


Subject(s)
Glycine max/metabolism , Plant Proteins/genetics , Alleles , Animals , Base Sequence , Death, Sudden , Female , Genes, Plant , Genetic Loci , Genetic Pleiotropy , Genotype , Molecular Sequence Data , Nematoda/pathogenicity , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Polymorphism, Single Nucleotide , Signal Transduction/genetics , Glycine max/genetics , Glycine max/growth & development , Syndrome , Transgenes
11.
Theor Appl Genet ; 124(6): 1027-39, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22200919

ABSTRACT

Host resistance to "yellow dwarf" or "moonlight" disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24-48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.


Subject(s)
Glycine max/genetics , Nematoda/pathogenicity , Plant Diseases/genetics , Plant Immunity , Plant Proteins/genetics , Alleles , Animals , Cysts/parasitology , DNA, Plant/genetics , Genes, Plant , Genetic Linkage , Genetic Loci , Nematoda/growth & development , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Proteins/metabolism , Recombination, Genetic , Sequence Analysis, DNA , Glycine max/immunology , Glycine max/parasitology
12.
Plant Cell ; 23(10): 3798-811, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21984695

ABSTRACT

RPM1-interacting protein 4 (RIN4) is a multifunctional Arabidopsis thaliana protein that regulates plant immune responses to pathogen-associated molecular patterns (PAMPs) and bacterial type III effector proteins (T3Es). RIN4, which is targeted by multiple defense-suppressing T3Es, provides a mechanistic link between PAMP-triggered immunity (PTI) and effector-triggered immunity and effector suppression of plant defense. Here we report on a structure-function analysis of RIN4-mediated suppression of PTI. Separable fragments of RIN4, including those produced when the T3E AvrRpt2 cleaves RIN4 and each containing a plant-specific nitrate-induced (NOI) domain, suppress PTI. The N-terminal and C-terminal NOIs each contribute to PTI suppression and are evolutionarily conserved. Native RIN4 is anchored to the plasma membrane by C-terminal acylation. Nonmembrane-tethered derivatives of RIN4 activate a cell death response in wild-type Arabidopsis and are hyperactive PTI suppressors in a mutant background that lacks the cell death response. Our results indicate that RIN4 is a multifunctional suppressor of PTI and that a virulence function of AvrRpt2 may include cleaving RIN4 into active defense-suppressing fragments.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Carrier Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/immunology , Pseudomonas syringae/pathogenicity , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Death , Cell Membrane/metabolism , Gene Expression Regulation, Plant/physiology , Intracellular Signaling Peptides and Proteins , Models, Biological , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Plant Leaves , Plants, Genetically Modified , Protein Structure, Tertiary , Pseudomonas syringae/growth & development , Pseudomonas syringae/immunology , Receptors, Pattern Recognition/metabolism , Virulence
13.
Cell Host Microbe ; 9(2): 125-36, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21320695

ABSTRACT

The Arabidopsis NB-LRR immune receptor RPM1 recognizes the Pseudomonas syringae type III effectors AvrB or AvrRpm1 to mount an immune response. Although neither effector is itself a kinase, AvrRpm1 and AvrB are known to target Arabidopsis RIN4, a negative regulator of basal plant defense, for phosphorylation. We show that RIN4 phosphorylation activates RPM1. RIN4(142-176) is necessary and, with appropriate localization sequences, sufficient to support effector-triggered RPM1 activation, with the threonine residue at position 166 being critical. Phosphomimic substitutions at T166 cause effector-independent RPM1 activation. RIN4 T166 is phosphorylated in vivo in the presence of AvrB or AvrRpm1. RIN4 mutants that lose interaction with AvrB cannot be coimmunoprecipitated with RPM1. This defines a common interaction platform required for RPM1 activation by phosphorylated RIN4 in response to pathogenic effectors. Conservation of an analogous threonine across all RIN4-like proteins suggests a key function for this residue beyond the regulation of RPM1.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Plant Diseases/immunology , Pseudomonas syringae/metabolism , Threonine/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins , Phosphorylation , Plant Diseases/microbiology , Protein Binding , Protein Structure, Tertiary , Pseudomonas syringae/genetics
14.
Plant Physiol ; 151(3): 1264-80, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19429603

ABSTRACT

Heterodera glycines, the soybean cyst nematode (SCN), causes the most damaging chronic disease of soybean (Glycine max). Host resistance requires the resistance allele at rhg1. Resistance destroys the giant cells created in the plant's roots by the nematodes about 24 to 48 h after commencement of feeding. In addition, 4 to 8 d later, a systemic acquired resistance develops that discourages later infestations. The molecular mechanisms that control the rhg1-mediated resistance response appear to be multigenic and complex, as judged by transcript abundance changes, even in near isogenic lines (NILs). This study aimed to focus on key posttranscriptional changes by identifying proteins and metabolites that were increased in abundance in both resistant and susceptible NILs. Comparisons were made among NILs 10 d after SCN infestation and without SCN infestation. Two-dimensional gel electrophoresis resolved more than 1,000 protein spots on each gel. Only 30 protein spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were found among the four treatments. The proteins in these spots were picked, trypsin digested, and analyzed using quadrupole time-of-flight tandem mass spectrometry. Protein identifications could be made for 24 of the 30 spots. Four spots contained two proteins, so that 28 distinct proteins were identified. The proteins were grouped into six functional categories. Metabolite analysis by gas chromatography-mass spectrometry identified 131 metabolites, among which 58 were altered by one or more treatment; 28 were involved in primary metabolism. Taken together, the data showed that 17 pathways were altered by the rhg1 alleles. Pathways altered were associated with systemic acquired resistance-like responses, including xenobiotic, phytoalexin, ascorbate, and inositol metabolism, as well as primary metabolisms like amino acid synthesis and glycolysis. The pathways impacted by the rhg1 allelic state and SCN infestation agreed with transcript abundance analyses but identified a smaller set of key proteins. Six of the proteins lay within the same small region of the interactome identifying a key set of 159 interacting proteins involved in transcriptional control, nuclear localization, and protein degradation. Finally, two proteins (glucose-6-phosphate isomerase [EC 5.3.1.9] and isoflavone reductase [EC 1.3.1.45]) and two metabolites (maltose and an unknown) differed in resistant and susceptible NILs without SCN infestation and may form the basis of a new assay for the selection of resistance to SCN in soybean.


Subject(s)
Glycine max/genetics , Plant Diseases/genetics , Plant Roots/metabolism , Proteome/metabolism , Alleles , Animals , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Plant , Genes, Plant , Immunity, Innate , Plant Roots/genetics , Protein Interaction Mapping , Proteome/genetics , Glycine max/metabolism , Tandem Mass Spectrometry , Tylenchoidea/physiology
15.
Mol Plant Microbe Interact ; 21(5): 507-17, 2008 May.
Article in English | MEDLINE | ID: mdl-18393610

ABSTRACT

Plants are hosts to a wide array of pathogens from all kingdoms of life. In the absence of an active immune system or combinatorial diversifications that lead to recombination-driven somatic gene flexibility, plants have evolved different strategies to combat both individual pathogen strains and changing pathogen populations. The receptor-like kinase (RLK) gene-family expansion in plants was hypothesized to have allowed accelerated evolution among domains implicated in signal reception, typically a leucine-rich repeat (LRR). Under that model, the gene-family expansion represents a plant-specific adaptation that leads to the production of numerous and variable cell surface and cytoplasmic receptors. More recently, it has emerged that the LRR domains of RLK interact with a diverse group of proteins leading to combinatorial variations in signal response specificity. Therefore, the RLK appear to play a central role in signaling during pathogen recognition, the subsequent activation of plant defense mechanisms, and developmental control. The future challenges will include determinations of RLK modes of action, the basis of recognition and specificity, which cellular responses each receptor mediates, and how both receptor and kinase domain interactions fit into the defense signaling cascades. These challenges will be complicated by the limited information that may be derived from the primary sequence of the LRR domain. The review focuses upon implications derived from recent studies of the secondary and tertiary structures of several plant RLK that change understanding of plant receptor function and signaling. In addition, the biological functions of plant and animal RLK-containing receptors were reviewed and commonalities among their signaling mechanisms identified. Further elucidated were the genomic and structural organizations of RLK gene families, with special emphasis on RLK implicated in resistance to disease and development.


Subject(s)
Plant Proteins/physiology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Models, Biological , Plant Cells , Plant Diseases/immunology , Plant Proteins/immunology , Plant Proteins/metabolism , Plants/metabolism
16.
Protein Expr Purif ; 53(2): 346-55, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17287130

ABSTRACT

Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.


Subject(s)
Escherichia coli/genetics , Glycine max/genetics , Soybean Proteins/genetics , Soybean Proteins/isolation & purification , Amino Acid Sequence , Base Sequence , Circular Dichroism , Cloning, Molecular , Codon/genetics , DNA, Plant/genetics , Escherichia coli/chemistry , Gene Expression , Genes, Plant , Inclusion Bodies/chemistry , Molecular Sequence Data , Plasmids/genetics , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility , Soybean Proteins/chemistry
17.
Nucleic Acids Res ; 34(Database issue): D758-65, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16381975

ABSTRACT

Genomes that have been highly conserved following increases in ploidy (by duplication or hybridization) like Glycine max (soybean) present challenges during genome analysis. At http://soybeangenome.siu.edu the Soybean Genome Database (SoyGD) genome browser has, since 2002, integrated and served the publicly available soybean physical map, bacterial artificial chromosome (BAC) fingerprint database and genetic map associated genomic data. The browser shows both build 3 and build 4 contiguous sets of clones (contigs) of the soybean physical map. Build 4 consisted of 2854 contigs that encompassed 1.05 Gb and 404 high-quality DNA markers that anchored 742 contigs. Many DNA markers anchored sets of 2-8 different contigs. Each contig in the set represented a homologous region of related sequences. GBrowse was adapted to show sets of homologous contigs at all potential anchor points, spread laterally and prevented from overlapping. About 8064 minimum tiling path (MTP2) clones provided 13,473 BAC end sequences (BES) to decorate the physical map. Analyses of BES placed 2111 gene models, 40 marker anchors and 1053 new microsatellite markers on the map. Estimated sequence tag probes from 201 low-copy gene families located 613 paralogs. The genome browser portal showed each data type as a separate track. Tetraploid, octoploid, diploid and homologous regions are shown clearly in relation to an integrated genetic and physical map.


Subject(s)
Chromosome Mapping , Databases, Nucleic Acid , Genome, Plant , Glycine max/genetics , Polyploidy , Chromosomes, Artificial, Bacterial , Contig Mapping , Genomics , Internet , Microsatellite Repeats , Sequence Homology, Nucleic Acid , Sequence Tagged Sites , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...