Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(10): 14623-14634, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163907

ABSTRACT

We demonstrate in simulation and experiment that the out-of-plane, far-field scattering profile of resonance modes in photonic crystal nanobeam (PCN) cavities can be used to identify resonance mode order. Through detection of resonantly scattered light with an infrared camera, the overlap between optical resonance modes and the leaky region of k-space can be measured experimentally. Mode order dependent overlap with the leaky region enables usage of resonance scattering as a "fingerprint" by which resonant modes in nanophotonic structures can be identified via detection in the far-field. By selectively observing emission near the PCN cavity region, the resonant scattering profile of the device can be spatially isolated and the signal noise introduced by other elements in the transmission line can be significantly reduced, consequently improving the signal to noise ratio (SNR) of resonance detection. This work demonstrates an increase in SNR of ∼ 19 dB in out-of-plane scattering measurements over in-plane transmission measurements. The capabilities demonstrated here may be applied to improve characterization across nanophotonic devices with mode-dependent spatial field profiles and enhance the utility of these devices across a variety of applications.

2.
Opt Express ; 27(7): 9536-9549, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045103

ABSTRACT

Photonic crystal (PhC) nanobeams (NB) patterned on porous silicon (PSi) waveguide substrates are demonstrated for the specific, label-free detection of oligonucleotides. These photonic structures combine the large active sensing area intrinsic to PSi sensors with the high-quality (Q) factor and low-mode volume characteristic of compact resonant silicon-on-insulator (SOI) PhC NB devices. The PSi PhC NB can achieve a Q-factor near 9,000 and has an approximately 40-fold increased active sensing area for molecular attachment, compared to traditional SOI PhC NB sensors. The PSi PhC NB exhibits a resonance shift that is more than one order of magnitude larger than that of a similarly designed SOI PhC NB for the detection of small chemical molecules and 16-base peptide nucleic acids. The design and fabrication of PSi PhC NB sensors are compatible with CMOS processing, sensor arrays, and integration with lab-on-chip systems.

3.
Opt Lett ; 43(17): 4260-4263, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30160766

ABSTRACT

Side-coupled photonic crystal (PhC) nanobeam cavities were investigated to overcome challenges in measuring low-order resonances in traditional in-line PhC nanobeams that arise due to the trade-off between achieving high quality (Q)-factor and high transmission intensity resonances. On the same PhC nanobeam, we demonstrate that the side-coupling approach leads to measurable resonances even in cases in which high mirror strength unit cells severely limit the intensity of transmitted light through the in-line configuration. In addition, by coupling light directly into the cavity center, the design of side-coupled PhC nanobeams can be simplified such that high Q-factor PhC nanobeams can be achieved using only two different hole radii and uniform hole spacing.

SELECTION OF CITATIONS
SEARCH DETAIL
...