Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0300279, 2024.
Article in English | MEDLINE | ID: mdl-38805433

ABSTRACT

Software engineers post their opinions about various topics on social media that can be collectively mined using Sentiment Analysis. Analyzing this opinion is useful because it can provide insight into developers' feedback about various tools and topics. General-purpose sentiment analysis tools do not work well in the software domain because most of these tools are trained on movies and review datasets. Therefore, efforts are underway to develop domain-specific sentiment analysis tools for the Software Engineering (SE) domain. However, existing domain-specific tools for SE struggle to compute negative and neutral sentiments and can not be used on all SE datasets. This work uses a hybrid technique based on deep learning and a fine-tuned BERT model, i.e., Bert-Base, Bert-Large, Bert-LSTM, Bert-GRU, and Bert-CNN presented that is adapted as a domain-specific sentiment analysis tool for Community Question Answering datasets (named as Fuzzy Ensemble). Five different variants of fine-tuned BERT on the SE dataset are developed, and an ensemble of these fine-tuned models is taken using fuzzy logic. The trained model is evaluated on four publicly available benchmark datasets, i.e., Stack Overflow, JavaLib, Jira, and Code Review, using various evaluation metrics. The fuzzy Ensemble model is also compared with the state-of-the-art sentiment analysis tools for the software engineering domain, i.e., SentiStrength-SE, Senti4SD, SentiCR, and Generative Pre-Training Transformer (GPT). GPT mode is fine-tuned by the authors for domain-specific sentiment analysis. The Fuzzy Ensemble model covers the limitation of existing tools and improve accuracy to predict neutral sentiments even on diverse dataset. The fuzzy Ensemble model performs superior to state-of-the-art tools by achieving a maximum F1-score of 0.883.


Subject(s)
Fuzzy Logic , Software , Humans , Social Media , Deep Learning
2.
Diagnostics (Basel) ; 13(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37443594

ABSTRACT

Artificial intelligence has made substantial progress in medicine. Automated dental imaging interpretation is one of the most prolific areas of research using AI. X-ray and infrared imaging systems have enabled dental clinicians to identify dental diseases since the 1950s. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, and machine- and deep-learning models for dental disease diagnoses using X-ray and near-infrared imagery. Despite the notable development of AI in dentistry, certain factors affect the performance of the proposed approaches, including limited data availability, imbalanced classes, and lack of transparency and interpretability. Hence, it is of utmost importance for the research community to formulate suitable approaches, considering the existing challenges and leveraging findings from the existing studies. Based on an extensive literature review, this survey provides a brief overview of X-ray and near-infrared imaging systems. Additionally, a comprehensive insight into challenges faced by researchers in the dental domain has been brought forth in this survey. The article further offers an amalgamative assessment of both performances and methods evaluated on public benchmarks and concludes with ethical considerations and future research avenues.

3.
Healthcare (Basel) ; 11(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36766922

ABSTRACT

Automated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches.

4.
Sensors (Basel) ; 22(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36560144

ABSTRACT

In today's world, mental health diseases have become highly prevalent, and depression is one of the mental health problems that has become widespread. According to WHO reports, depression is the second-leading cause of the global burden of diseases. In the proliferation of such issues, social media has proven to be a great platform for people to express themselves. Thus, a user's social media can speak a great deal about his/her emotional state and mental health. Considering the high pervasiveness of the disease, this paper presents a novel framework for depression detection from textual data, employing Natural Language Processing and deep learning techniques. For this purpose, a dataset consisting of tweets was created, which were then manually annotated by the domain experts to capture the implicit and explicit depression context. Two variations of the dataset were created, on having binary and one ternary labels, respectively. Ultimately, a deep-learning-based hybrid Sequence, Semantic, Context Learning (SSCL) classification framework with a self-attention mechanism is proposed that utilizes GloVe (pre-trained word embeddings) for feature extraction; LSTM and CNN were used to capture the sequence and semantics of tweets; finally, the GRUs and self-attention mechanism were used, which focus on contextual and implicit information in the tweets. The framework outperformed the existing techniques in detecting the explicit and implicit context, with an accuracy of 97.4 for binary labeled data and 82.9 for ternary labeled data. We further tested our proposed SSCL framework on unseen data (random tweets), for which an F1-score of 94.4 was achieved. Furthermore, in order to showcase the strengths of the proposed framework, we validated it on the "News Headline Data set" for sarcasm detection, considering a dataset from a different domain. It also outmatched the performance of existing techniques in cross-domain validation.


Subject(s)
Deep Learning , Mental Disorders , Social Media , Humans , Male , Female , Semantics , Depression/diagnosis , Mental Health
5.
Healthcare (Basel) ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36360529

ABSTRACT

Artificial intelligence has been widely used in the field of dentistry in recent years. The present study highlights current advances and limitations in integrating artificial intelligence, machine learning, and deep learning in subfields of dentistry including periodontology, endodontics, orthodontics, restorative dentistry, and oral pathology. This article aims to provide a systematic review of current clinical applications of artificial intelligence within different fields of dentistry. The preferred reporting items for systematic reviews (PRISMA) statement was used as a formal guideline for data collection. Data was obtained from research studies for 2009-2022. The analysis included a total of 55 papers from Google Scholar, IEEE, PubMed, and Scopus databases. Results show that artificial intelligence has the potential to improve dental care, disease diagnosis and prognosis, treatment planning, and risk assessment. Finally, this study highlights the limitations of the analyzed studies and provides future directions to improve dental care.

6.
Saudi J Biol Sci ; 29(1): 444-452, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002440

ABSTRACT

Climate change could be an existential threat to many crops. Drought and heat stress are becoming harder for cultivated crops. Cotton in Pakistan is grown under natural high temperature and low moisture, could be used as a source of heat and drought tolerance. Therefore, the study was conducted to morphological, physiological and molecular characterization of cotton genotypes under field conditions. A total of 25 cotton genotypes were selected from the gene pool of Pakistan based on tolerance to heat and drought stress. In field trail, the stress related traits like boll retention percentage, plant height, number of nodes and inter-nodal distance were recorded. In physiological assessment, traits such as photosynthesis rate, stomatal conductance, transpiration rate, leaf temperature, relative water content and excised leaf water loss were observed. At molecular level, a set of 19 important transcription factors, controlling drought/heat stress tolerance (HSPCB, GHSP26, HSFA2, HSP101, HSP3, DREB1A, DREB2A, TPS, GhNAC2, GbMYB5, GhWRKY41, GhMKK3, GhMPK17, GhMKK1, GhMPK2, APX1, HSC70, ANNAT8, and GhPP2A1) were analyzed from all genotypes. Data analyses depicted that boll retention percentage, photosynthesis, stomatal conductance, relative water content under the stress conditions were associated with the presence of important drought & heat TF/genes which depicts high genetic potential of Pakistani cotton varieties against abiotic stress. The variety MNH-886 appeared in medium plant height, high boll retention percentage, high relative water content, photosynthesis rate, stomatal conductance, transpiration rate and with maximum number transcription factors under study. The variety may be used as source material for heat and drought tolerant cotton breeding. The results of this study may be useful for the cotton breeders to develop genotype adoptable to environmental stresses under climate change scenario.

7.
Comput Math Methods Med ; 2021: 5589829, 2021.
Article in English | MEDLINE | ID: mdl-34422092

ABSTRACT

Adverse drug reactions (ADRs) are the undesirable effects associated with the use of a drug due to some pharmacological action of the drug. During the last few years, social media has become a popular platform where people discuss their health problems and, therefore, has become a popular source to share information related to ADR in the natural language. This paper presents an end-to-end system for modelling ADR detection from the given text by fine-tuning BERT with a highly modular Framework for Adapting Representation Models (FARM). BERT overcame the predominant neural networks bringing remarkable performance gains. However, training BERT is a computationally expensive task which limits its usage for production environments and makes it difficult to determine the most important hyperparameters for the downstream task. Furthermore, developing an end-to-end ADR extraction system comprising two downstream tasks, i.e., text classification for filtering text containing ADRs and extracting ADR mentions from the classified text, is also challenging. The framework used in this work, FARM-BERT, provides support for multitask learning by combining multiple prediction heads which makes training of the end-to-end systems easier and computationally faster. In the proposed model, one prediction head is used for text classification and the other is used for ADR sequence labeling. Experiments are performed on Twitter, PubMed, TwiMed-Twitter, and TwiMed-PubMed datasets. The proposed model is compared with the baseline models and state-of-the-art techniques, and it is shown that it yields better results for the given task with the F-scores of 89.6%, 97.6%, 84.9%, and 95.9% on Twitter, PubMed, TwiMed-Twitter, and TwiMed-PubMed datasets, respectively. Moreover, training time and testing time of the proposed model are compared with BERT's, and it is shown that the proposed model is computationally faster than BERT.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacovigilance , Computational Biology , Databases, Factual/statistics & numerical data , Diagnosis, Computer-Assisted , Drug-Related Side Effects and Adverse Reactions/diagnosis , Humans , Machine Learning , Natural Language Processing , Neural Networks, Computer , PubMed/statistics & numerical data , Social Media/statistics & numerical data
8.
Sensors (Basel) ; 21(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809080

ABSTRACT

Given the high prevalence and detrimental effects of unintentional falls in the elderly, fall detection has become a pertinent public concern. A Fall Detection System (FDS) gathers information from sensors to distinguish falls from routine activities in order to provide immediate medical assistance. Hence, the integrity of collected data becomes imperative. Presence of missing values in data, caused by unreliable data delivery, lossy sensors, local interference and synchronization disturbances and so forth, greatly hamper the credibility and usefulness of data making it unfit for reliable fall detection. This paper presents a noise tolerant FDS performing in presence of missing values in data. The work focuses on Deep Learning (DL) particularly Recurrent Neural Networks (RNNs) with an underlying Bidirectional Long Short-Term Memory (BiLSTM) stack to implement FDS based on wearable sensors. The proposed technique is evaluated on two publicly available datasets-SisFall and UP-Fall Detection. Our system produces an accuracy of 97.21% and 97.41%, sensitivity of 96.97% and 99.77% and specificity of 93.18% and 91.45% on SisFall and UP-Fall Detection respectively, thus outperforming the existing state of the art on these benchmark datasets. The resultant outcomes suggest that the ability of BiLSTM to retain long term dependencies from past and future make it an appropriate model choice to handle missing values for wearable fall detection systems.


Subject(s)
Deep Learning , Wearable Electronic Devices , Activities of Daily Living , Aged , Algorithms , Humans , Neural Networks, Computer
9.
Mol Biol Rep ; 48(2): 1069-1079, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33609263

ABSTRACT

Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.


Subject(s)
Gossypium/genetics , Heat-Shock Response/genetics , Photosynthesis/genetics , Plant Leaves/genetics , Chlorophyll/genetics , Droughts , Genotype , Gossypium/growth & development , Hot Temperature , Pakistan , Plant Breeding , Plant Leaves/growth & development
10.
Sensors (Basel) ; 19(14)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336818

ABSTRACT

The inevitable revolution of the Internet of Things (IoT) and its benefits can be witnessed everywhere. Two major issues related to IoT are the interoperability and the identification of trustworthy things. The proposed Context-Aware Trustworthy Social Web of Things System (CATSWoTS) addresses the interoperability issue by incorporating web technologies including Service Oriented Architecture where each thing plays the role of a service provider as well as a role of service consumer. The aspect of social web helps in getting recommendations from social relations. It was identified that the context dependency of trust along with Quality of Service (QoS) criteria, for identifying and recommending trustworthy Web of Things (WoT), require more attention. For this purpose, the parameters of context awareness and the constraints of QoS are considered. The research focuses on the idea of a user-centric system where the profiles of each thing (level of trustworthiness) are being maintained at a centralized level and at a distributed level as well. The CATSWoTS evaluates service providers based on the mentioned parameters and the constraints and then identifies a suitable service provider. For this, a rule-based collaborative filtering approach is used. The efficacy of CATSWoTS is evaluated with a specifically designed environment using a real QoS data set. The results showed that the proposed novel technique fills the gap present in the state of the art. It performed well by dynamically identifying and recommending trustworthy services as per the requirements of a service seeker.

11.
J Med Syst ; 43(8): 271, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278506

ABSTRACT

We present a novel reconstruction method for dynamic MR images from highly under-sampled k-space measurements. The reconstruction problem is posed as spectrally regularized matrix recovery problem, where kernel-based low rank constraint is employed to effectively utilize the non-linear correlations between the images in the dynamic sequence. Unlike other kernel-based methods, we use a single-step regularized reconstruction approach to simultaneously learn the kernel basis functions and the weights. The objective function is optimized using variable splitting and alternating direction method of multipliers. The framework can seamlessly handle additional sparsity constraints such as spatio-temporal total variation. The algorithm performance is evaluated on a numerical phantom and in vivo data sets and it shows significant improvement over the comparison methods.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Humans , Liver/diagnostic imaging , Myocardial Perfusion Imaging
12.
Forensic Sci Int ; 299: 59-73, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30959401

ABSTRACT

Web browsers are among the most commonly used applications to access the web from any platform nowadays. With recent digital incidents involving breach of data, users are becoming more cognizant of the threat posed by malicious actors having access to personal data as well as vulnerable applications which may compromise their data. For this very reason, users are being offered privacy preserving solutions for trust maturity. The onion router (Tor) browser is one such application which not only ensures the privacy preservation goals but also provides promising anonymity. Due to this feature, majority of the users use Tor browser for normal use as well as malign activities. In order to validate the claims of Tor browser and help digital forensic investigators and researchers, we created different scenarios to forensically analyze the Tor browser privacy and anonymity. As a result of the findings, it can be concluded that the Tor browser leaves plethora of sensitive digital artifacts on host machine, which can be further used to compromise user data.


Subject(s)
Forensic Sciences/methods , Web Browser , Artifacts , Data Anonymization , Humans , Internet , Privacy
13.
J Biomed Semantics ; 4(1): 6, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23398680

ABSTRACT

BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. CONCLUSION: We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.

14.
J Biomed Semantics ; 2 Suppl 1: S4, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21388573

ABSTRACT

BACKGROUND: There have been a number of recent efforts (e.g. BioCatalogue, BioMoby) to systematically catalogue bioinformatics tools, services and datasets. These efforts rely on manual curation, making it difficult to cope with the huge influx of various electronic resources that have been provided by the bioinformatics community. We present a text mining approach that utilises the literature to automatically extract descriptions and semantically profile bioinformatics resources to make them available for resource discovery and exploration through semantic networks that contain related resources. RESULTS: The method identifies the mentions of resources in the literature and assigns a set of co-occurring terminological entities (descriptors) to represent them. We have processed 2,691 full-text bioinformatics articles and extracted profiles of 12,452 resources containing associated descriptors with binary and tf*idf weights. Since such representations are typically sparse (on average 13.77 features per resource), we used lexical kernel metrics to identify semantically related resources via descriptor smoothing. Resources are then clustered or linked into semantic networks, providing the users (bioinformaticians, curators and service/tool crawlers) with a possibility to explore algorithms, tools, services and datasets based on their relatedness. Manual exploration of links between a set of 18 well-known bioinformatics resources suggests that the method was able to identify and group semantically related entities. CONCLUSIONS: The results have shown that the method can reconstruct interesting functional links between resources (e.g. linking data types and algorithms), in particular when tf*idf-like weights are used for profiling. This demonstrates the potential of combining literature mining and simple lexical kernel methods to model relatedness between resource descriptors in particular when there are few features, thus potentially improving the resource description, discovery and exploration process. The resource profiles are available at http://gnode1.mib.man.ac.uk/bioinf/semnets.html.

SELECTION OF CITATIONS
SEARCH DETAIL
...