Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050266

ABSTRACT

Wound healing faces significant challenges in clinical settings. It often contains a series of dynamic and complex physiological healing processes. Instead of creams, ointments and solutions, alternative treatment approaches are needed. The main objective of the study was to formulate bacitracin zinc-loaded topical patches as a new therapeutic agent for potential wound healing. A free radical polymerization technique was optimized for synthesis. Polyethylene glycol-8000 (PEG-8000) was chemically cross-linked with acrylic acid in aqueous medium, using Carbopol 934 as a permeation enhancer and tween 80 as surfactant. Ammonium persulfate and N,N'-Methylenebisacrylamide (MBA) were utilized as initiator and cross-linker. FTIR, DSC, TGA, and SEM were performed, and patches were evaluated for swelling dynamics, sol-gel analysis, in vitro drug release in various media. A Franz diffusion cell was used for the permeation study. Irritation and wound healing with the drug-loaded patches were also studied. The characterization studies confirmed the formation of a cross-linked hydrogel network. The highest swelling and drug release were observed in formulations containing highest Polyethylene glycol-8000 and lowest N,N'-Methylenebisacrylamide concentrations. The pH-sensitive behavior of patches was also confirmed as more swelling, drug release and drug permeation across skin were observed at pH 7.4. Fabricated patches showed no sign of irritation or erythema as evaluated by the Draize scale. Faster wound healing was also observed with fabricated patches compared to marketed formulations. Therefore, such a polymeric network can be a promising technology for speeding up wound healing and minor skin injuries through enhanced drug deposition.

2.
Drug Dev Ind Pharm ; 48(11): 611-622, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36420771

ABSTRACT

OBJECTIVE: Ketorolac tromethamine (KT), selected as a model drug, is used in management of moderate to severe acute pain. It has a short half-life (∼5.5 h) and requires frequent dose administration when needed for longer period of time. In our current project, we designed pH responsive hydrogel blends of chondroitin sulfate/pluronic F-127 (CS/Pl) for the controlled release of ketorolac. METHODS: Hydrogel blends were fabricated using free radical polymerization reaction technique utilizing different ratios of chondroitin sulfate (CS) (polymer) and pluronic F-127 (polymer), acrylic acid (monomer), N,N'-methyl-bisacrylamide (MBA) (cross-linker), initiator ammonium persulfate (APS) and tween-80 (surfactant). The fabricated hydrogel blends were studied and evaluated for pH responsiveness, swelling, water absorbency, in vitro drug release, and morphological characteristics such as SEM, XRD, FTIR, and TGA/DSC. Acute toxicity study was performed on rabbits. RESULTS: Maximum swelling and water absorbency were shown by CS/Pl blends being significantly greater at 7.4 (basic pH) than in 1.2 (acidic pH). In vitro dissolution demonstrated pH responsive controlled KT release following zero order at higher pH (7.4) medium up to 36 h. FTIR studies confirmed the structures of our blends; SEM results showed porous framework; thermal studies revealed higher stability of hydrogels than the individual polymers; and XRD confirmed the nature of our blends. Toxicity study revealed the nontoxic nature of the hydrogel blends. CONCLUSION: The prepared CS/Pl hydrogels demonstrated stimuli-controlled release with delivery of drug for prolonged period of time and thus can minimize dosing frequency, safe drug delivery, increased patient compliance and easiness.


Subject(s)
Ketorolac , Poloxamer , Animals , Rabbits , Delayed-Action Preparations , Chondroitin Sulfates , Hydrogels/chemistry , Polymers/chemistry , Hydrogen-Ion Concentration , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...