Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Ann Transl Med ; 12(3): 43, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38911554

ABSTRACT

Background: Several tissues contribute to the onset and advancement of knee osteoarthritis (OA). One tissue type that is worthy of closer evaluation, particularly in the context of sex, is the infrapatellar fat pad (IFP). We previously demonstrated that removal of the IFP had short-term beneficial effects for a cohort of male Dunkin-Hartley guinea pigs. The present project was designed to elucidate the influence of IFP removal in females of this OA-prone strain. It was hypothesized that resection of the IFP would reduce the development of OA in knees of a rodent model predisposed to the disease. Methods: Female guinea pigs (n=16) were acquired at an age of 2.5 months. Surgical removal of the IFP and associated synovium complex (IFP/SC) was executed at 3 months of age. One knee had the IFP/SC resected; a comparable sham surgery was performed on the contralateral knee. All animals were subjected to voluntary enclosure monitoring and dynamic weight-bearing, as well as compulsory treadmill-based gait analysis monthly; baseline data was collected prior to surgery. Guinea pigs were euthanized at 7 months. Knees from eight animals were evaluated via histology, mRNA expression, and immunohistochemistry (IHC); knees from the remaining eight animals were allocated to microcomputed tomography (microCT), biomechanical analyses (whole joint testing and indentation relaxation testing), and atomic absorption spectroscopy (AAS). Results: Fibrous connective tissue (FCT) replaced the IFP/SC. Mobility/gait data indicated that unilateral IFP/SC removal did not affect bilateral hindlimb movement. MicroCT demonstrated that osteophytes were not a significant feature of OA in this sex; however, trabecular thickness (TbTh) in medial femorae decreased in knees containing the FCT. Histopathology scores were predominantly influenced by changes in the lateral tibia, which demonstrated that histologic signs of OA were increased in knees containing the native IFP/SC versus those with the FCT. Similarly, indentation testing demonstrated higher instantaneous and equilibrium moduli in the lateral tibial articular cartilage of control knees with native IFPs. AAS of multiple tissue types associated with the knee revealed that zinc was the major trace element influenced by removal of the IFP/SC. Conclusions: Our data suggest that the IFP/SC is a significant component driving knee OA in female guinea pigs and that resection of this tissue prior to disease has short-term benefits. Specifically, the formation of the FCT in place of the native tissue resulted in decreased cartilage-related OA changes, as demonstrated by reduced Osteoarthritis Research Society International (OARSI) histology scores, as well as changes in transcript, protein, and cartilage indentation analyses. Importantly, this model provides evidence that sex needs to be considered when investigating responses and associated mechanisms seen with this intervention.

2.
Magn Reson Med ; 92(3): 1022-1034, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38650395

ABSTRACT

PURPOSE: This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure. METHODS: Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation ( M 2 $$ {M}_2 $$ and M 3 $$ {M}_3 $$ ) and b = 100 , 450 $$ b=100,450 $$ , and 1000 s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ (twice the b max $$ {b}_{\mathrm{max}} $$ commonly used on clinical scanners). Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and secondary eigenvector angle (E2A) were calculated for b = [100, 450] s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ and b = [100, 1000] s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ for both M 2 $$ {M}_2 $$ and M 3 $$ {M}_3 $$ . RESULTS: The MD values with M 3 $$ {M}_3 $$ are slightly higher than with M 2 $$ {M}_2 $$ with Δ MD = 0 . 05 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 5 ) $$ \Delta \mathrm{MD}=0.05\pm 0.05\kern0.3em \left[\times 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-5\right) $$ for b max = 450 s / mm 2 $$ {b}_{\mathrm{max}}=450\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ and Δ MD = 0 . 03 ± 0 . 03 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 4 ) $$ \Delta \mathrm{MD}=0.03\pm 0.03\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-4\right) $$ for b max = 1000 s / mm 2 $$ {b}_{\mathrm{max}}=1000\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ . A reduction in MD is observed by increasing the b max $$ {b}_{\mathrm{max}} $$ from 450 to 1000 s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ ( Δ MD = 0 . 06 ± 0 . 04 [ × 1 0 - 3 mm 2 / s ] ( p = 1 . 6 e - 9 ) $$ \Delta \mathrm{MD}=0.06\pm 0.04\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1.6e-9\right) $$ for M 2 $$ {M}_2 $$ and Δ MD = 0 . 08 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 1 e - 9 ) $$ \Delta \mathrm{MD}=0.08\pm 0.05\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1e-9\right) $$ for M 3 $$ {M}_3 $$ ). The difference between FA, E2A, and HA was not significant in different schemes ( p > 0 . 05 $$ p>0.05 $$ ). CONCLUSION: This work demonstrates cardiac DWI in vivo with higher b-value and higher order of motion compensated diffusion gradient waveforms than is commonly used. Increasing the motion compensation order from M 2 $$ {M}_2 $$ to M 3 $$ {M}_3 $$ and the maximum b-value from 450 to 1000 s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ affected the MD values but FA and the angular metrics (HA and E2A) remained unchanged. Our work paves the way for cardiac DWI on the next-generation MR scanners with high-performance gradient systems.


Subject(s)
Diffusion Magnetic Resonance Imaging , Heart , Humans , Male , Adult , Heart/diagnostic imaging , Female , Healthy Volunteers , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Anisotropy , Algorithms , Image Interpretation, Computer-Assisted/methods
3.
J Microsc ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594963

ABSTRACT

We present a comparison of common electron microscopy sample preparation methods for studying crystallisation processes from solution using both scanning and transmission electron microscopy (SEM and TEM). We focus on two widely studied inorganic systems: calcium sulphate, gypsum (CaSO4·2H2O) and calcium carbonate (CaCO3). We find significant differences in crystallisation kinetics and polymorph selection between the different sample preparation methods, which indicate that drying and chemical quenching can induce severe artefacts that are capable of masking the true native state of the crystallising solution. Overall, these results highlight the importance of cryogenic (cryo)-quenching crystallising solutions and the use of full cryo-TEM as the most reliable method for studying the early stages of crystallisation.

4.
Connect Tissue Res ; 65(1): 26-40, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898909

ABSTRACT

PURPOSE/AIM: Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS: Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS: Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS: Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Osteoarthritis, Knee , Osteoarthritis , Mice , Male , Animals , Toll-Like Receptor 4 , Disease Models, Animal , Mice, Inbred C57BL , Osteoarthritis/pathology , Cartilage/pathology , Cartilage Diseases/pathology , Cartilage, Articular/pathology , Osteoarthritis, Knee/pathology
5.
Magn Reson Med ; 91(4): 1323-1336, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38156527

ABSTRACT

PURPOSE: The characterization of tissue microstructure using diffusion MRI (dMRI) signals is rapidly evolving, with increasing sophistication of signal representations and microstructure models. However, this progress often requires signals to be acquired with very high b-values (e.g., b > 30 ms/µm2 ), along many directions, and using multiple b-values, leading to long scan times and extremely low SNR in dMRI images. The purpose of this work is to boost the SNR efficiency of dMRI by combining three particularly efficient spatial encoding techniques and utilizing a high-performance gradient system (Gmax ≤ 300 mT/m) for efficient diffusion encoding. METHODS: Spiral readouts, multiband imaging, and sampling on tilted hexagonal grids (T-Hex) are combined and implemented on a 3T MRI system with ultra-strong gradients. Image reconstruction is performed through an iterative cg-SENSE algorithm incorporating static off-resonance distributions and field dynamics as measured with an NMR field camera. Additionally, T-Hex multiband is combined with a more conventional EPI-readout and compared with state-of-the-art blipped-CAIPIRINHA sampling. The advantage of the proposed approach is furthermore investigated for clinically available gradient performance and diffusion kurtosis imaging. RESULTS: High fidelity in vivo images with b-values up to 40 ms/µm2 are obtained. The approach provides superior SNR efficiency over other state-of-the-art multiband diffusion readout schemes. CONCLUSION: The demonstrated gains hold promise for the widespread dissemination of advanced microstructural scans, especially in clinical populations.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Diffusion Tensor Imaging , Algorithms , Brain/diagnostic imaging
6.
Front Neurosci ; 17: 1258408, 2023.
Article in English | MEDLINE | ID: mdl-38144210

ABSTRACT

Introduction: Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) offers improved cellular specificity to microstructure-compared to water-based methods alone-but spatial resolution and SNR is severely reduced and slow-diffusing metabolites necessitate higher b-values to accurately characterize their diffusion properties. Ultra-strong gradients allow access to higher b-values per-unit time, higher SNR for a given b-value, and shorter diffusion times, but introduce additional challenges such as eddy-current artefacts, gradient non-uniformity, and mechanical vibrations. Methods: In this work, we present initial DW-MRS data acquired on a 3T Siemens Connectom scanner equipped with ultra-strong (300 mT/m) gradients. We explore the practical issues associated with this manner of acquisition, the steps that may be taken to mitigate their impact on the data, and the potential benefits of ultra-strong gradients for DW-MRS. An in-house DW-PRESS sequence and data processing pipeline were developed to mitigate the impact of these confounds. The interaction of TE, b-value, and maximum gradient amplitude was investigated using simulations and pilot data, whereby maximum gradient amplitude was restricted. Furthermore, two DW-MRS voxels in grey and white matter were acquired using ultra-strong gradients and high b-values. Results: Simulations suggest T2-based SNR gains that are experimentally confirmed. Ultra-strong gradient acquisitions exhibit similar artefact profiles to those of lower gradient amplitude, suggesting adequate performance of artefact mitigation strategies. Gradient field non-uniformity influenced ADC estimates by up to 4% when left uncorrected. ADC and Kurtosis estimates for tNAA, tCho, and tCr align with previously published literature. Discussion: In conclusion, we successfully implemented acquisition and data processing strategies for ultra-strong gradient DW-MRS and results indicate that confounding effects of the strong gradient system can be ameliorated, while achieving shorter diffusion times and improved metabolite SNR.

7.
Iran J Microbiol ; 15(5): 625-630, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37941879

ABSTRACT

Background and Objectives: An increase in the antibiotic resistance of Shigella isolates has caused major global challenges in antimicrobial therapy. Knowledge of local antibiotic resistance trends is essential for selecting appropriate antibiotic treatment regimens. This study aimed to evaluate the frequency of efflux-mediated tetracycline resistance (tet) and plasmid-mediated quinolone resistance (qnr) genes among Shigella isolates. Materials and Methods: This survey investigated 91 Shigella isolates, obtained from children with acute diarrhea. The isolates were identified using standard biochemical tests and confirmed by polymerase chain reaction (PCR) assay. Besides, the susceptibility of isolates to six selected antibiotics was assessed by the disk diffusion method. All tetracycline-resistant and nalidixic acid and ciprofloxacin resistant strains were screened for tet and qnr genes by a multiplex PCR assay. Results: According to the results of antibiotic susceptibility tests, the highest level of antibiotic resistance was related to tetracycline (80.2%) and doxycycline (78.1%), respectively. All isolates were sensitive to tigecycline. The PCR results showed that 40.6%, 3.1%, 21.8%, 61.6% and 28.7% of the isolates carried qnrA, qnrB, qnrS, tetA, and tetB genes, respectively. None of the isolates contained tetC and tetD genes. Conclusion: The current findings revealed that tetA and qnrA genes might play a key role in conferring tetracycline and quinolone resistance.

8.
Magn Reson Med ; 90(5): 2144-2157, 2023 11.
Article in English | MEDLINE | ID: mdl-37345727

ABSTRACT

PURPOSE: This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts. METHODS: DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( Δ $$ \Delta $$ ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values. The slow-diffusing component was attributed to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated at Δ = 0 $$ \Delta =0 $$ using linear regression. Secondly, given the secondary and the tertiary diffusion eigenvalue measurements for the slow-diffusing component obtained at different diffusion times, major and minor diameters were estimated assuming a cylinder model with an elliptical cross-section (ECS). High-resolution three-dimensional synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical parameters. RESULTS: Estimated parameters using DWI data were (control 1/control 2 vs. TAC 1/TAC 2): major diameter-17.4 µ $$ \mu $$ m/18.0 µ $$ \mu $$ m versus 19.2 µ $$ \mu $$ m/19.0 µ $$ \mu $$ m; minor diameter-10.2 µ $$ \mu $$ m/9.4 µ $$ \mu $$ m versus 12.8 µ $$ \mu $$ m/13.4 µ $$ \mu $$ m; and ICV-62%/62% versus 68%/47%. These findings were consistent with SRI measurements. CONCLUSION: The proposed method allowed for accurate estimation of biophysical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of hypertrophy in the heart.


Subject(s)
Aortic Valve Stenosis , Myocytes, Cardiac , Mice , Animals , Diffusion Magnetic Resonance Imaging/methods , Cardiomegaly/diagnostic imaging , Imaging, Three-Dimensional
9.
Ethiop J Health Sci ; 33(1): 133-142, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36890937

ABSTRACT

Background: Chlamydia trachomatis, Ureaplasma parvum, and Mycoplasma genitalium are common sexually transmitted microorganisms. Our study aimed to determine the prevalence of C. trachomatis, U. parvum, and M. genitalium in infertile and fertile couples and the effect of these microorganisms on semen parameters. Materials and Methods: In this case-control study, samples were collected from 50 infertile couples and 50 fertile couples and were subjected to the routine semen analysis and Polymerase chain reaction (PCR). Results: C. trachomatis and U. parvum were detected in 5 (10%) and 6 (12%) of semen samples from infertile men. Also, out of 50 endocervical swabs from the infertile women, C. trachomatis and M. genitalium were detected in 7(14%) and 4 (8%) of swab specimens, respectively. In the control groups, all of the semen samples and endocervical swabs were negative. Also, in the group of infertile patients infected with C. trachomatis and U. parvum, sperm motility was lower than uninfected infertile men. Conclusions: The results of this study showed that C. trachomatis, U. parvum, and M. genitalium are widespread among the infertile couples in Khuzestan Province (Southwest of Iran). Also, our results showed that these infections can decrease the quality of semen. For the prevention of the consequences of these infections, we suggest a screening program for infertile couples.


Subject(s)
Chlamydia Infections , Infertility, Female , Infertility, Male , Mycoplasma genitalium , Female , Humans , Male , Ureaplasma , Semen , Chlamydia trachomatis , Ureaplasma urealyticum , Infertility, Male/epidemiology , Infertility, Female/epidemiology , Prevalence , Case-Control Studies , Sperm Motility , Chlamydia Infections/epidemiology
10.
Ann Biomed Eng ; 51(3): 579-593, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36070048

ABSTRACT

The anterior cruciate ligament (ACL) is the most commonly injured knee ligament. Surgical reconstruction is the gold standard treatment for ACL ruptures, but 20-50% of patients develop post-traumatic osteoarthritis (PTOA). ACL rupture is thus a well-recognized etiology of PTOA; however, little is known about the initial relationship between ligamentous injury and subsequent PTOA. The goals of this project were to: (1) develop both partial and full models of mid-substance ACL rupture in male and female mice using non-invasive mechanical methods by means of tibial displacement; and (2) to characterize early PTOA changes in the full ACL rupture model. A custom material testing system was utilized to induce either partial or full ACL rupture by means of tibial displacement at 1.6 or 2.0 mm, respectively. Mice were euthanized either (i) immediately post-injury to determine rupture success rates or (ii) 14 days post-injury to evaluate early PTOA progression following full ACL rupture. Our models demonstrated high efficacy in inciting either full or partial ACL rupture in male and female mice within the mid-substance of the ACL. These tools can be utilized for preclinical testing of potential therapeutics and to further our understanding of PTOA following ACL rupture.


Subject(s)
Anterior Cruciate Ligament Injuries , Osteoarthritis , Mice , Male , Female , Animals , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament , Knee Joint , Tibia , Rupture/complications
11.
J Orthop Res ; 41(4): 902-912, 2023 04.
Article in English | MEDLINE | ID: mdl-36030381

ABSTRACT

Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression. Indeed, multiple manuscripts have evaluated intra-articular administration of adMSCs as a therapeutic; however, comparatively few evaluations of systemic delivery methods have been published. Therefore, the aim of this study was to evaluate the short-term impact of intravenous (IV) delivery of allogeneic adMSCs in an established model of spontaneous OA, the Hartley guinea pig. Animals with moderate OA received once weekly injections of 2 × 106 adMSCs or vehicle control for 4 weeks in peripheral veins; harvest occurred 2 weeks after the final injection. Systemic administration of adMSCs resulted in no adverse effects and was efficacious in reducing clinical signs of OA (as assessed by computer-aided gait analysis) compared to control injected animals. Further, there were significant decreases in key inflammatory mediators (including monocyte chemoattractant protein-1, tumor necrosis factor, and prostaglandin E2 ) both systemically (liver, kidney, and serum) and locally in the knee (joint tissues and synovial fluid) in animals treated with IV adMSCs relative to controls (as per enzyme-linked immunosorbent assay and/or immunohistochemistry, dictated by tissue sample). Thus, systemic administration of adMSCs by IV injection significantly improved gait parameters and reduced both systemic and intra-articular inflammatory mediators in animals with OA. These findings demonstrate the potential utility of alternative delivery approaches for cellular therapy of OA, particularly for patients with multiple affected joints.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis, Knee , Osteoarthritis , Animals , Guinea Pigs , Injections, Intravenous , Osteoarthritis/pathology , Knee Joint/pathology , Inflammation , Injections, Intra-Articular , Osteoarthritis, Knee/pathology , Mesenchymal Stem Cell Transplantation/methods
12.
J Physiol ; 601(11): 2189-2216, 2023 06.
Article in English | MEDLINE | ID: mdl-35924591

ABSTRACT

Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.


Subject(s)
NF-E2-Related Factor 2 , Proteostasis , Male , Female , Animals , Guinea Pigs , NF-E2-Related Factor 2/metabolism , Muscle, Skeletal/physiology , Mitochondria/metabolism , Aging/physiology
13.
Arthritis Res Ther ; 24(1): 282, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36578046

ABSTRACT

BACKGROUND: The infrapatellar fat pad (IFP) is the largest adipose deposit in the knee; however, its contributions to the homeostasis of this organ remain undefined. To determine the influence of the IFP and its associated synovium (IFP/synovium complex or IFP/SC) on joint health, this study evaluated the progression of osteoarthritis (OA) following excision of this unit in a rodent model of naturally-occurring disease. METHODS: Male Dunkin-Hartley guinea pigs (n=18) received surgical removal of the IFP in one knee at 3 months of age; contralateral knees received sham surgery as matched internal controls. Mobility and gait assessments were performed prior to IFP/SC removal and monthly thereafter. Animals were harvested at 7 months of age. Ten set of these knees were processed for microcomputed tomography (microCT), histopathology, transcript expression analyses, and immunohistochemistry (IHC); 8 sets of knees were dedicated to microCT and biomechanical testing (material properties of knee joints tissues and anterior drawer laxity). RESULTS: Fibrous connective tissue (FCT) developed in place of the native adipose depot. Gait demonstrated no significant differences between IFP/SC removal and contralateral hindlimbs. MicroCT OA scores were improved in knees containing the FCT. Quantitatively, IFP/SC-containing knees had more osteophyte development and increased trabecular volume bone mineral density (vBMD) in femora and tibiae. Histopathology confirmed maintenance of articular cartilage structure, proteoglycan content, and chondrocyte cellularity in FCT-containing knees. Transcript analyses revealed decreased expression of adipose-related molecules and select inflammatory mediators in FCTs compared to IFP/SCs. This was verified via IHC for two key inflammatory agents. The medial articular cartilage in knees with native IFP/SCs showed an increase in equilibrium modulus, which correlated with increased amounts of magnesium and phosphorus. DISCUSSION/CONCLUSION: Formation of the FCT resulted in reduced OA-associated changes in both bone and cartilage. This benefit may be associated with: a decrease in inflammatory mediators at transcript and protein levels; and/or improved biomechanical properties. Thus, the IFP/SC may play a role in the pathogenesis of knee OA in this strain, with removal prior to disease onset appearing to have short-term benefits.


Subject(s)
Osteoarthritis, Knee , Male , Guinea Pigs , Animals , Osteoarthritis, Knee/metabolism , X-Ray Microtomography , Knee Joint/pathology , Adipose Tissue/metabolism , Synovial Membrane/metabolism , Obesity/complications , Inflammation Mediators/metabolism
14.
Int J Hypertens ; 2022: 7802792, 2022.
Article in English | MEDLINE | ID: mdl-36059588

ABSTRACT

Background: Most of the patients with hypertension (HTN) who undergo medical therapy unaccompanied by psychological and behavioral interventions may not achieve their goal in HTN treatment. Self-care is a key factor in controlling HTN. Given that depression, stress, and anxiety are the most psychological disorders in chronic illnesses. Their impact on self-care, quality of life, and HTN control must be studied more. Methods: We analyzed the difference in medication adherence in 252 patients with low vs. high psychological distress. Also, patients with controlled and uncontrolled HTN were compared according to their psychological distress scores. We further assessed the relation of psychological distress, self-care, and medication adherence with patients' demographic characteristics. Results: 61.3% of our participants were female with a mean age of 60.6 ± 11.35 and male participants had a mean age of 60.5 ± 11.55. The psychological distress score was significantly higher in women with uncontrolled HTN (p value = 0.044). Also, individuals with controlled HTN tend to have a higher medication adherence score (p value = 0.01) and higher self-care score (p value = 0.033). Hypertensive females had a higher psychological distress score (3.35 ± 2.05) and a lower self-care score (64.05 ± 8.16). There was a positive relationship between age and drug adherence. The self-care score was higher (65.95 ± 7.88) in patients having lower psychological distress levels. Conclusion: A lower psychological distress score can result in better self-care, enhancing the probability of better HTN control; thus, psychological interventions may be necessary for the treatment of HTN. However, more studies are needed to assess the effectiveness of this intervention.

15.
Front Psychol ; 13: 900417, 2022.
Article in English | MEDLINE | ID: mdl-35664188

ABSTRACT

Since teachers and their psychological factors have a significant share of variance in accounting for success in educational contexts, significant number of empirical studies have investigated the associations among intrapsychic variables of teachers. To further examine the inter-connections between individual teacher constructs in English as a Foreign Language (EFL) contexts, this study explored the role of emotion regulation and teacher self-efficacy in predicting teacher burnout in the Chinese EFL context. In so doing, a sample of 174 EFL teachers completed a survey containing the three valid scales measuring these constructs. Structural Equation Modeling was employed to examine the structural model of the variables under investigation. The findings revealed that teacher self-efficacy accounted for 20% of the variance in burnout, whereas emotion regulation represented 11.2% of the teacher burnout variance. Overall, it was revealed that although both variables exerted a significant unique contribution to teacher burnout, teacher self-efficacy seemed to be a stronger predictor of burnout than emotion regulation of teachers. The results might have remarkable implications for EFL teacher development programs.

16.
Magn Reson Med ; 88(5): 2043-2057, 2022 11.
Article in English | MEDLINE | ID: mdl-35713357

ABSTRACT

PURPOSE: Although both relaxation and diffusion imaging are sensitive to tissue microstructure, studies have reported limited sensitivity and robustness of using relaxation or conventional diffusion alone to characterize tissue microstructure. Recently, it has been shown that tensor-valued diffusion encoding and joint relaxation-diffusion quantification enable more reliable quantification of compartment-specific microstructural properties. However, scan times to acquire such data can be prohibitive. Here, we aim to simultaneously quantify relaxation and diffusion using MR fingerprinting (MRF) and b-tensor encoding in a clinically feasible time. METHODS: We developed multidimensional MRF scans (mdMRF) with linear and spherical b-tensor encoding (LTE and STE) to simultaneously quantify T1, T2, and ADC maps from a single scan. The image quality, accuracy, and scan efficiency were compared between the mdMRF using LTE and STE. Moreover, we investigated the robustness of different sequence designs to signal errors and their impact on the maps. RESULTS: T1 and T2 maps derived from the mdMRF scans have consistently high image quality, while ADC maps are sensitive to different sequence designs. Notably, the fast imaging steady state precession (FISP)-based mdMRF scan with peripheral pulse gating provides the best ADC maps that are free of image distortion and shading artifacts. CONCLUSION: We demonstrated the feasibility of quantifying T1, T2, and ADC maps simultaneously from a single mdMRF scan in around 24 s/slice. The map quality and quantitative values are consistent with the reference scans.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Diffusion , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radionuclide Imaging
17.
Magn Reson Imaging ; 91: 52-61, 2022 09.
Article in English | MEDLINE | ID: mdl-35561868

ABSTRACT

This work focuses on obtaining a magnetic resonance imaging (MRI) signal representation that accounts for a longitudinal T1 and transverse T2⋆ relaxations while at the same time integrating directional diffusion in the context of scattered multi-parametric acquisitions, where only a few diffusion gradient directions and b-values are available for each pair of echo and inversion times. The method is based on the three-dimensional simple harmonic oscillator-based reconstruction and estimation (SHORE) representation of the diffusion signal, which enables the estimation of the orientation distribution function and the retrieval of various quantitative indices such as the generalized fractional anisotropy or the return-to-the-origin probability while simultaneously resolving for T1 and T2⋆ relaxation times. Our technique, the Relax-SHORE, has been tested on both in silico and in vivo diffusion-relaxation scattered MR data. The results show that Relax-SHORE is accurate in the context of scattered acquisitions while guaranteeing flexibility in the diffusion signal representation from multi-parametric sequences.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Anisotropy , Brain , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods
18.
J Gerontol A Biol Sci Med Sci ; 77(9): 1766-1774, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35323931

ABSTRACT

Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aß], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans. Here, we describe 2 nontransgenic guinea pig (GP) models, a standard PigmEnTed (PET) strain, and lesser-studied Dunkin-Hartley (DH) strain, that may naturally mimic key features of brain aging and AD in humans. We show that brain aging in PET GP is transcriptomically similar to human brain aging, whereas older DH brains are transcriptomically more similar to human AD. Both strains/models also exhibit increased neurofilament light chain (NFL, a marker of neuronal damage) with aging, and DH animals display greater S100 calcium-binding protein B (S100ß), ionized calcium-binding adapter molecule 1 (Iba1), and Aß and phosphorylated tau-which are all important markers of neuroinflammation-associated AD. Collectively, our results suggest that both the PET and DH GP may be useful, nontransgenic models to study brain aging and AD, respectively.


Subject(s)
Alzheimer Disease , Aging/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers/metabolism , Brain/metabolism , Disease Models, Animal , Guinea Pigs , Humans , tau Proteins/metabolism
19.
Neuroimage ; 254: 118958, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35217204

ABSTRACT

Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.


Subject(s)
Connectome , Brain/diagnostic imaging , China , Connectome/methods , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans
20.
Front Neuroimaging ; 1: 958680, 2022.
Article in English | MEDLINE | ID: mdl-37555138

ABSTRACT

Diffusion MR is sensitive to the microstructural features of a sample. Fine-scale characteristics can be probed by employing strong diffusion gradients while the low b-value regime is determined by the cumulants of the distribution of particle displacements. A signal representation based on the cumulants, however, suffers from a finite convergence radius and cannot represent the 'localization regime' characterized by a stretched exponential decay that emerges at large gradient strengths. Here, we propose a new representation for the diffusion MR signal. Our method provides not only a robust estimate of the first three cumulants but also a meaningful extrapolation of the entire signal decay.

SELECTION OF CITATIONS
SEARCH DETAIL
...