Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 185: 997-1004, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34237368

ABSTRACT

Two-faced characteristics and performance of materials driven by asymmetric physical or chemical properties exist in Janus hybrid materials which show synergistic and improved properties for a variety of applications. Here, we report a facile synthesis of Janus hybrid sustainable cellulose nanofibers (CNFs) sponge with asymmetric wettability and strong mechanical property for excellent separation efficiency of oil-water emulsions. Briefly, the CNF Janus hybrid sponge was fabricated by freeze-drying of two separate CNF suspensions into one, each prepared separately by introducing CNFs in methyltrimethoxysilane (MTMS) or 3-glycidoxypropyltrimethoxysilane (GPTMS) for hydrophobic or hydrophilic performance, respectively. The sponge demonstrated satisfactory mechanical stability with an excellent recovery from 80% compressive strain and high pore tortuosity. When employed for oil-water separation, the Janus hybrid sponge could selectively be used to collect water or oil by just switching its side facing the oil-water mixture feed via unidirectional gravity-assisted separation, with recyclability. The fabrication of such Janus hybrid sponge is one of the many approaches for utilizing nanofibers in structurally adaptive, self-supported asymmetric membrane structures in a 3D network.


Subject(s)
Cellulose/chemistry , Oils/chemistry , Water/chemistry , Emulsions , Freeze Drying , Hydrophobic and Hydrophilic Interactions , Nanofibers , Porosity , Silanes/chemistry , Wettability
2.
RSC Adv ; 8(58): 33129-33137, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-35548122

ABSTRACT

Silicon-containing compounds such as silica are effective heavy metal sorbents which can be employed in many applications. This is attributed to the porous nature of hydrothermally-stable silica, endowing such materials with high surface area and rich surface chemistry, all responsible for improving adsorption and desorption performance. However, to this day, the wide application of silica is limited by its skeletal brittleness and high production cost coupled with a risky traditional supercritical drying method. To solve the named problems, herein, precipitated silica agglomerates (referred to as PSA) was crosslinked with TEMPO-oxidized cellulose nanofibrils (TO-CNF) as a reinforcement in the presence of 3-aminopropyltriethoxysilane (APTES), via a facile dual metal synthesis approach, is reported. The resultant new silica-based sponges (TO-CNF PSA) showed desirable properties of flexibility, porosity and multifaceted sorption of various heavy metals with re-usability. The experimental results showed maximum adsorption capacities of 157.7, 33.22, 140.3 and 130.5 mg g-1 for Pb(ii), Hg(ii), Cr(iii) and Cd(ii) ions, respectively. Such a facile approach to modify silica materials by attaching active groups together with reinforcement can provide improved and reliable silica-based materials which can be applied in water treatment, gas purification, thermal insulation etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...